首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.  相似文献   

2.
'Nude', a new hairless gene with pleiotropic effects in the mouse   总被引:45,自引:0,他引:45  
  相似文献   

3.
4.
Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e., inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of vitamin D(3) and vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer.  相似文献   

5.
The mechanisms that guide axons through a complex cellular landscape to reach appropriate target cells are central to our understanding of neural development. Decades of work suggest that guidance information is interpreted by signaling machinery that controls the complex and dynamic cytoskeleton at the growth cone leading edge. Recent insights from the areas of signal transduction and cell biology have identified a number of key components that play central roles in this chain of command, including members of the Ena/VASP and WASP family of proteins. Although our understanding of the precise mechanism by which these proteins control actin assembly is still incomplete, these players are emerging as potential sites of integration that translate convergent signals into directional cell movement. This brief review explores some of the most recent articles on this topic.  相似文献   

6.
Michaël Cerezo 《Autophagy》2017,13(1):216-217
Treatment of melanoma has significantly advanced over the last decade, with the development of targeted therapies against the MAPK pathway and immunotherapies to reactivate antitumor immunity. Unfortunately, currently more than 50% of patients are in treatment failure. Thus, identification of new common cellular vulnerability among melanoma cells is an urgent need and will help in the discovery of more efficient treatments against melanoma. We have focused our study on protein processing and have identified a new compound, HA15, targeting HSPA5/BiP, the master regulator of the unfolded protein response (UPR). By inhibiting HSPA5 specifically, our molecule increases the UPR and leads to the death of cancer cells by concomitant induction of autophagy and apoptosis, an effect seen both in vitro and in vivo. Our study provides compelling evidence to support the idea that endoplasmic reticulum (ER) stress inducers could be useful as a new therapeutic approach in melanoma treatment.  相似文献   

7.
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.  相似文献   

8.
During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and in Salmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with an hns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. The vicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. cholerae wild-type strain expressing a vicHDelta92 gene lacking its 3' end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.  相似文献   

9.
10.
Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of moleculesacross membranes, Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.  相似文献   

11.
Pleiotropic drug resistance(PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette(ABC)transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones,and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.  相似文献   

12.
13.
Autophagy is a response to the stress of nutrient limitation in yeast, whereby cytosolic long-lived proteins and organelles are nonselectively degraded, and the resulting macromolecules are recycled to allow new protein synthesis that is essential for survival. We recently revealed that endoplasmic reticulum (ER) stress induces autophagy. When misfolded proteins accumulate in the ER the resulting stress activates the unfolded protein response (UPR) to induce the expression of chaperones and proteins involved in the recovery process. Under conditions of ER stress, the preautophagosomal structure is assembled, and transport of autophagosomes to the vacuole is stimulated in an Atg protein-dependent manner. Interestingly, Atg1 has high kinase activity during ER stress-induced autophagy similar to the situation in starvation-induced autophagy.  相似文献   

14.
15.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

16.
Production of the blue-pigmented antibiotic actinorhodin is greatly enhanced in Streptomyces lividans and Streptomyces coelicolor by transformation with a 2.7-kb DNA fragment from the S. coelicolor chromosome cloned on a multicopy plasmid. Southern analysis, restriction map comparisons, and map locations of the cloned genes revealed that these genes were different from other known S. coelicolor genes concerned with actinorhodin biosynthesis or its pleiotropic regulation. Computer analysis of the DNA sequence showed five putative open reading frames (ORFs), which were named ORFA, ORFB, and ORFC (transcribed in one direction) and ORFD and ORFE (transcribed in the opposite direction). Subcloning experiments revealed that ORFB together with 137 bp downstream of it is responsible for antibiotic overproduction in S. lividans. Insertion of a phi C31 prophage into ORFB by homologous recombination gave rise to a mutant phenotype in which the production of actinorhodin, undecylprodigiosin, and the calcium-dependent antibiotic (but not methylenomycin) was reduced or abolished. The nonproducing mutants were not affected in the timing or vigor or sporulation. A possible involvement of ORFA in antibiotic production in S. coelicolor is not excluded. abaA constitutes a new locus which, like the afs and abs genes previously described, pleiotropically regulates antibiotic production. DNA sequences that hybridize with the cloned DNA are present in several different Streptomyces species.  相似文献   

17.
Tiller number (TN) and spike number per plant (SN) are key components of grain yield and/or biomass in wheat. In this study, an introgression line 05210, developed by introgression of chromosomal segments from a synthetic exotic wheat Am3 into an elite cultivar Laizhou953, showed a significantly increased TN and SN, but shorter spike length (SL) and fewer grain number per spike (GNS) than Laizhou953. To investigate the quantitative trait locus (QTL) responsible for these variations, the introgressed segments in 05210 were screened by SSR markers and one follow-up segregation population was developed from the cross 05210/Laizhou953. The population showed 3:1 segregation ratios for SN, SL and GNS, indicating that QTLs for these traits have been dissected into single Mendelian factors. Bulked segregation analysis showed that the markers located on the 4B introgressed segment were polymorphic between the two bulks. Therefore, they were further analyzed in the F2 population to construct a linkage map. Three new QTLs, QSn.sdau-4B, QSl.sdau-4B and QGns.sdau-4B, were detected for SN, SL and GNS, respectively, which explained a large portion of the phenotypic variation (30.1–67.6%) for these traits with overlapping peaks. Correlation analysis and multiple-trait, multiple-interval mapping (MMIM) suggested pleiotropic effects of the QTL on SN, SL and GNS. Therefore, the QTL was designated as QSn.sdau-4B. By a progeny test based on F3 families using SN, the QTL was mapped as a Mendelian factor to the proximal region of 4BL. It is a key QTL responsible for variation in spike number and size, which had not been reported previously. Thus, it is an important QTL for wheat to achieve high and stable biomass and grain yield. Dissection and mapping of this QTL as a Mendelian factor laid a solid foundation for map-based cloning of grain yield-related QTLs in wheat.  相似文献   

18.
19.
Activation of reactive oxygen and nitrogen species (RONS) by redox-active metal ions has been proposed to contribute to oxidative damage in inflamed tissues. Here, we report a dual-function anti-oxidant conjugate comprising an anti-inflammatory agent (5-aminosalicylic acid) and a chelator with potential as a superoxide dismutase mimic. The conjugate ethylenediaminetetraacetic acid bis-(5-aminosalicylic acid methyl ester) [EBAME] chelates Cu(II) ions in a 1:1 ratio, as assessed spectrophotometrically using Job's method. Superoxide dismutase (SOD) activity was determined for the Mn(II)-conjugate as 0.758+/-0.130 U at a concentration of 0.99 microM. In inflamed tissues, peptidase mediated release of active 5-ASA would also release the EDTA chelator which has significant SOD mimic activity when complexed to Cu(II) ions. Thus, EBAME has potential as a dual-function anti-inflammatory agent with reduced gastric irritability.  相似文献   

20.
We report herein the synthesis of a newly described anti-cancer agent, NRPa-308. This compound antagonizes Neuropilin-1, a multi-partners transmembrane receptor overexpressed in numerous tumors, and thereby validated as promising target in oncology. The preparation of NRPa-308 proved challenging because of the orthogonality of the amide and sulphonamide bonds formation. Nevertheless, we succeeded a gram scale synthesis, according to an expeditious three steps route, without intermediate purification. This latter point is of utmost interest in reducing the ecologic impact and production costs in the perspective of further scale-up processes. The purity of NRPa-308 has been attested by means of conventional structural analyses and its crystallisation allowed a structural assessment by X-Ray diffraction. We also reported the remarkable chemical stability of this molecule in acidic, neutral and basic aqueous media. Eventually, we observed for the first time the accumulation of NRPa-308 in two types of human breast cancer cells MDA-MB231 and BT549.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号