首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy. We identified a novel gene named ATG28 (autophagy-related genes) involved in pexophagy in the yeast Pichia pastoris. This yeast exhibits two morphologically distinct pexophagy pathways, micro- and macropexophagy, induced by glucose or ethanol, respectively. Deficiency in ATG28 impairs both pexophagic mechanisms but not general (bulk turnover) autophagy, a degradation pathway in yeast triggered by nitrogen starvation. It is known that the micro-, macropexophagy, and general autophagy machineries are distinct but share some molecular components. The identification of ATG28 suggests that pexophagy may involve species-specific components, since this gene appears to have only weak homologues in other yeasts.  相似文献   

2.
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.  相似文献   

3.
The methylotrophic yeast Pichia pastoris can degrade peroxisomes selectively though two distinct pexophagic pathways, viz., micropexophagy and macropexophagy. These micro- and macropexophagy pathways are induced by adaptation of methanol-grown cells to glucose-containing and ethanol-containing media respectively. However, our understanding of the molecular signal(s) that determine which pathway is activated or repressed in response to environmental changes is limited. In this study, the determinant for these pathways was sought using cells undergoing pexophagy under a variety of conditions. Micropexophagy and macropexophagy were distinguished in living cells by fluorescence microscopy. Our results indicate that glucose and ethanol were not specific inducers of micro- and macropexophagy respectively. Micropexophagy was found to be more sensitive to ATP-depletion than macropexophagy, suggesting that the micropexophagic process requires a higher level of ATP than the macropexophagic process. From these and other results, we postulate that intracellular ATP levels play an important role in determining which pexophagic pathway is activated.  相似文献   

4.
Ravi Manjithaya 《FEBS letters》2010,584(7):1367-1373
Pexophagy is a selective autophagy process wherein damaged and/or superfluous peroxisomes undergo vacuolar degradation. In methylotropic yeasts, where pexophagy has been studied most extensively, this process occurs by either micro- or macropexophagy: processes analogous to micro- and macroautophagy. Recent studies have identified specific factors and illustrated mechanisms involved in pexophagy. Although mechanistically pexophagy relies heavily on the core autophagic machinery, the latest findings about the role of auxiliary pexophagy factors have highlighted specialized membrane structures required for micropexophagy, and shown how cargo selectivity is achieved and how cargo size dictates the requirement for these factors during pexophagy. These insights and additional observations in the literature provide a framework for an understanding of the physiological role(s) of pexophagy.  相似文献   

5.
Peroxisomicine A1 (PA1) is a potential antineoplastic agent with high and selective toxicity toward peroxisomes of tumor cells. Pexophagy is a selective autophagy process that degrades damaged peroxisomes; this process has been studied mainly in methylotrophic yeasts. There are two main modes of pexophagy in yeast: macropexophagy and micropexophagy. Previous studies showed that peroxisomes damaged by a prolonged exposition to PA1 are eliminated by macropexophagy. In this work, Candida boidinii was grown in methanol‐containing media, and PA1 was added to the cultures at 2 µg/mL after they reached the mid‐exponential growth phase. Samples were taken at 5, 10, 15, 20, and 25 min after the addition of PA1 and processed for ultrastructural analysis. Typical morphological characteristics of micropexophagy were observed: the direct engulfment of peroxisomes by the vacuolar membrane and the presence of the micropexophagic membrane apparatus (MIPA), which mediates the fusion between the opposing tips of the vacuole to complete sequestration of peroxisomes from the cytosol. In conclusion, here we report that, in addition to macropexophagy, peroxisomes damaged by PA1 can be eliminated by micropexophagy. This information is useful to deepen the knowledge of the mechanism of action of PA1 and of that of pexophagy per se.  相似文献   

6.
Yarrowia lipolytica was recently introduced as a new model organism to study peroxisome degradation in yeasts. Transfer of Y. lipolytica cells from oleate/ethylamine to glucose/ammonium chloride medium leads to selective macroautophagy of peroxisomes. To decipher the molecular mechanisms of macropexophagy we isolated mutants of Y. lipolytica defective in the inactivation of peroxisomal enzymes under pexophagy conditions. Through this analysis we identified the gene YlTRS85, the ortholog of Saccharomyces cerevisiae TRS85 that encodes the 85 kDa subunit of transport protein particle (TRAPP). A parallel genetic screen in S. cerevisiae also identified the trs85 mutant. Here, we report that Trs85 is required for nonspecific autophagy, pexophagy and the cytoplasm to vacuole targeting pathway in both yeasts.  相似文献   

7.
Autophagy is a process of recycling of the intracellular constituents using vacuoles (lysosomes). General autophagy occurs due to involvement of highly conservative components found in all eukaryotes, from yeasts to higher plants and humans. Autophagy also could be a selective process and be involved in regulation of the cellular number of organelles, including that of peroxisomes. The process of specific autophagic peroxisome degradation is known as pexophagy. Yeasts appear to be convenient model for studying molecular mechanisms of pexophagy, and most known ATG genes (from the term AuTophaGy) were identified in yeast studies. This review examines characteristics of general autophagy, other types of autophagy as well as pexophagy, in particular, functions of Atg proteins in general autophagy and in macro- and micropexophagy. Special attention is given to mechanisms of phagophore assembly, the role of phosphatidylinositol-3-phosphate in pexophagy, the role of peroxines (proteins involved in peroxisome biogenesis) in pexophagy, as well as properties of Atg proteins specifically involved in micropexophagy.  相似文献   

8.
Cao Y  Klionsky DJ 《Autophagy》2007,3(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26Delta strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

9.
Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.  相似文献   

10.
11.
Cells are capable of adapting to changes in their environment by synthesizing needed proteins and degrading superfluous ones. Pichia pastoris synthesizes peroxisomal enzymes to grow in methanol medium. Upon adapting from methanol medium to one containing glucose, this yeast rapidly and selectively degrades peroxisomes by an autophagic process referred to as pexophagy. In this study, we have utilized a novel approach to identify genes required for this degradative pathway. Our approach involves the random integration of a vector containing the Zeocin resistance gene into the yeast genome by restriction enzyme-mediated integration. Cells unable to degrade peroxisomes during glucose adaptation were isolated, and the genes that were disrupted by the insertion of the vector were determined by sequencing. By using this approach, we have identified a number of genes required for glucose-induced selective autophagy of peroxisomes (GSA genes). We report here the characterization of Gsa11, a unique 208-kDa protein. We found that this protein is required for glucose-induced pexophagy and starvation-induced autophagy. Gsa11 is a cytosolic protein that becomes associated with one or more structures situated near the vacuole during glucose adaptation. The punctate localization of Gsa11 was not observed in gsa10, gsa12, gsa14, and gsa19 mutants. We have previously shown that Gsa9 appears to relocate from a compartment at the vacuole surface to regions between the vacuole and the peroxisomes being sequestered. In the gsa11 mutants, the vacuole only partially surrounded the peroxisomes, but Gsa9 was still distributed around the peroxisome cluster. This suggests that Gsa9 binds to the peroxisomes independent of the vacuole. The data also indicate that Gsa11 is not necessary for Gsa9 to interact with peroxisomes but acts at an intermediate event required for the vacuole to engulf the peroxisomes.  相似文献   

12.
《Autophagy》2013,9(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26? strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

13.
《Autophagy》2013,9(2):92-100
We have isolated the Hansenula polymorpha ATG11 and ATG25 genes, which are both required for glucose-induced selective peroxisome degradation (macropexophagy). ATG11 was identified before in other yeast species and shown to be involved in the Cvt pathway in Saccharomyces cerevisiae and glucose-induced micropexophagy in Pichia pastoris. Our data indicate that HpATG11 is required for macropexophagy. ATG25 represents a novel gene that encodes a 45 kDa coiled-coil protein. We show that this protein co-localizes with Atg11 on a small structure, which most likely represents the pre-autophagosomal structure (PAS). Cells of a constructed ATG25 deletion strain (atg25) displayed relatively slow, continuous degradation of peroxisomes by microautophagy during growth on methanol in the presence of excess nitrogen that also continued after induction of selective peroxisome degradation. This suggests that the processes of selective and non-selective autophagy are dysregulated in atg25 cells.  相似文献   

14.
Fungal microbodies (peroxisomes) are inducible organelles that proliferate in response to nutritional cues. Proteins involved in peroxisome biogenesis/proliferation are designated peroxins and are encoded by PEX genes. An autophagy-related process, termed pexophagy, is responsible for the selective removal of peroxisomes from the cell. Several genes involved in pexophagy are also required for autophagy and are collectively known as ATG genes. We have re-analysed the Aspergillus nidulans genome for the presence of PEX and ATG genes and have identified a number of previously missed genes. Also, we manually determined the correct intron positions in each identified gene. The data show that in A. nidulans and related fungi the basic set of genes involved in peroxisome biogenesis or degradation are conserved. However, both processes have features that more closely resemble organelle formation/degradation in mammals rather than yeast. Thus, filamentous fungi like A. nidulans are ideal model systems for peroxisome homeostasis in man.  相似文献   

15.
Pexophagy: the selective autophagy of peroxisomes   总被引:1,自引:0,他引:1  
Pichia pastoris and Hansenula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid. This feature has made these yeast species attractive model systems to dissect the molecular mechanisms controlling peroxisome biogenesis. We have found that upon glucose- or ethanol-induced catabolite inactivation, metabolically superfluous peroxisomes are rapidly and selectively degraded within the vacuole by a process called pexophagy, the selective removal of peroxisomes by autophagy-like processes. Utilizing several genetic screens, we have identified a number of genes that are essential for pexophagy. In this review, we will summarize our current knowledge of the molecular events of pexophagy.  相似文献   

16.
The abundance of peroxisomes within a cell can rapidly decrease by selective autophagic degradation (also designated pexophagy). Studies in yeast species have shown that at least two modes of peroxisome degradation are employed, namely macropexophagy and micropexophagy. During macropexophagy, peroxisomes are individually sequestered by membranes, thus forming a pexophagosome. This structure fuses with the vacuolar membrane, resulting in exposure of the incorporated peroxisome to vacuolar hydrolases. During micropexophagy, a cluster of peroxisomes is enclosed by vacuolar membrane protrusions and/or segmented vacuoles as well as a newly formed membrane structure, the micropexophagy-specific membrane apparatus (MIPA), which mediates the enclosement of the vacuolar membrane. Subsequently, the engulfed peroxisome cluster is degraded. This review discusses the current state of knowledge of pexophagy with emphasis on studies on methylotrophic yeast species.  相似文献   

17.
《Autophagy》2013,9(2):107-118
The targeting in eukaryotic cells of cellular components to the lysosome or vacuole for degradation is called autophagy. Not only cytoplasmic macromolecules and bulk cytoplasm are subject to this process; entire organelles such as peroxisomes can be processed. Autophagy of peroxisomes is called pexophagy. Unpublished evidence suggests that the analogous processing of glycosomes in the protozoan kinetoplastidsoccurs. Taking advantage of the (near-) complete status of three trypanosomatid genomes, a census of components of autophagy and related processes has been undertaken in these organisms. Simple database searches were supplemented by more advanced analyses where necessary. At most, only half of the components characterized in yeasts are present in trypanosomatids suggesting an unexpectedly streamlined version of autophagy occurs in these organisms. The cytosol-to-vacuole transport (CVT) system for delivery of proteins to the vacuole seems entirely absent in trypanosomatids. The accuracy of the census is supported by the coordinated absence of functionally linked components such as the conjugation system involving ATG12, ATG5, ATG10 and ATG16 that acts at the step of vesicle expansion and completion. Overall, the results areconsistent with a scenario of taxon-specific addition of components to a minimal core, a hypothesis that should be readily testable by further genomic surveys allied to laboratory experiments. A bioinformatics analysis of the trypanosomatidal proteins was carried out, highlighting the paucity of information available regarding their structures and enabling prioritization of targets for future structural biology work.  相似文献   

18.
The targeting in eukaryotic cells of cellular components to the lysosome or vacuole for degradation is called autophagy. Not only cytoplasmic macromolecules and bulk cytoplasm are subject to this process; entire organelles such as peroxisomes can be degraded. Autophagy of peroxisomes is called pexophagy. Unpublished evidence suggests that the analogous processing of glycosomes in the protozoan kinetoplastids occurs. Taking advantage of the (near-) complete status of three trypanosomatid genomes, a census of components of autophagy and related processes has been undertaken in these organisms. Simple database searches were supplemented by more advanced analyses where necessary. At most, only half of the components characterized in yeasts are present in trypanosomatids suggesting an unexpectedly streamlined version of autophagy occurs in these organisms. The cytoplasm-to-vacuole targeting (Cvt) system for delivery of proteins to the vacuole seems entirely absent in trypanosomatids. The accuracy of the census is supported by the coordinated absence of functionally linked components such as the conjugation system involving ATG12, ATG5, ATG10 and ATG16 that acts at the step of vesicle expansion and completion. Overall, the results are consistent with a scenario of taxon-specific addition of components to a minimal core, a hypothesis that should be readily testable by further genomic surveys allied to laboratory experiments. A bioinformatics analysis of the trypanosomatidal proteins was carried out, highlighting the paucity of information available regarding their structures and enabling prioritization of targets for future structural biology work.  相似文献   

19.
《Autophagy》2013,9(2):75-83
Pichia pastoris and Hanseula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid. This feature has made these yeast species attractive model systems to dissect the molecular mechanisms controlling peroxisome biogenesis. We have found that upon glucose- or ethanol-induced catabolite inactivation of metabolically superfluous peroxisomes are rapidly and selectively degraded within the vacuole by a process called pexophagy, the selective removal of peroxisomes by autophagy-like processes. Utilizing several genetic screens, we have identified a number of genes that are essential for pexophagy. In this review, we will summarize our current knowledge of the molecular events of pexophagy.  相似文献   

20.
Autophagy, Cvt pathway and pexophagy belong to membrane transport routes, which are able to enwrap into double-membrane vesicles and deliver to the vacuole various cytosolic material, including organelles. Pexophagy is a selective pathway of vacuolar degradation of redundant peroxisomes and can be induced by certain changes of carbon sources in yeasts. Here we review the most general molecular mechanisms of autophagic transport routes with a special emphasis on their features and functions in the yeast peroxisome degradation. Special attention has been also paid to differences in functioning of the basic autophagic machinery during micro- and macroautophagic peroxisome degradation in methylotrophic yeasts. The requirements of autophagic pathways for the sources of membrane for transport vesicle formation are also analyzed. Finally, we point to the gaps in our understanding of peroxisome degradation, which should be filled for complete integration of pexophagy into the network of autophagic transport routes to the vacuole in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号