共查询到20条相似文献,搜索用时 0 毫秒
1.
Ozuer A Wechuck JB Russell B Wolfe D Goins WF Glorioso JC Ataai MM 《Biotechnology progress》2002,18(3):476-482
Herpes simplex virus type-1 (HSV-1) is a neurotrophic human pathogen that establishes life-long latency in the nervous system. Our laboratory has extensively engineered this virus to retain the ability to persist in neurons without expression of lytic genes or disease phenotype. Highly defective, replication-incompetent HSV mutants are thus potentially ideal for transfer of therapeutic transgenes to human nerves where long-term therapy of nervous system disease may be provided. A prerequisite for using recombinant HSV vectors for therapeutic gene delivery to humans is the development of methods for large-scale manufacture of HSV vectors. Here we report studies to identify infection parameters that result in high-yield production of immediate early gene deletion mutant HSV vectors in complementing cells that supply the deleted essential viral functions in trans. Virus yield was correlated with various culture media conditions that included pH, glucose metabolism, and serum levels. The results demonstrated that systematic media exchange to remove lactate derived from high-level glucose consumption, maintenance of tissue culture pH at 6.8, and the use of 5% fetal bovine serum gave the highest yield of infectious virus. The data indicate that these are important parameters to consider for high-yield, large-scale virus production. 相似文献
2.
《Cell research》2021,(1):62-79
Autophagy is a conserved process that delivers cytosolic substances to the lysosome for degradation,but its direct role in the regulation of antiviral innate im... 相似文献
3.
4.
Auxin affects many aspects of plant growth and development. We previously used chemical genetics to dissect auxin-signaling mechanisms and identified a small molecule, sirtinol, that constitutively activated auxin signaling (Y. Zhao et al. [2003], Science 301: 1107-1110). Here we describe the isolation, characterization, and cloning of an Arabidopsis mutant Atcand1-1 that emerged from a genetic screen for mutants insensitive to sirtinol. Loss-of-function mutants of AtCAND1 were resistant to sirtinol and auxin, but not to gibberellins or brassinolide. Atcand1 displayed developmental phenotypes similar to those of axr1, namely, short petioles, downwardly curling leaves, short inflorescence, and reduced fertility. AtCAND1 is homologous to human CAND1, a protein that is composed almost entirely of HEAT-repeat units and has been implicated in regulating the assembly and disassembly of the SCF protein degradation machinery. Taken together with previous biochemical studies, this work helps to elucidate the roles of AtCAND1 in protein degradation and auxin signaling. 相似文献
5.
Tamoxifen is commonly used to treat patients with ESR/ER-positive breast cancer, but its therapeutic benefit is limited by the development of resistance. Recently, alterations in macroautophagy/autophagy function were demonstrated to be a potential mechanism for tamoxifen resistance. Although MTA1 (metastasis-associated 1) has been implicated in breast tumorigenesis and metastasis, its role in endocrine resistance has not been studied. Here, we report that the level of MTA1 expression was upregulated in the tamoxifen resistant breast cancer cell lines MCF7/TAMR and T47D/TR, and knockdown of MTA1 sensitized the cells to 4-hydroxytamoxifen (4OHT). Moreover, knockdown of MTA1 significantly decreased the enhanced autophagy flux in the tamoxifen resistant cell lines. To confirm the role of MTA1 in the development of tamoxifen resistance, we established a cell line, MCF7/MTA1, which stably expressed MTA1. Compared with parental MCF7, MCF7/MTA1 cells were more resistant to 4OHT-induced growth inhibition in vitro and in vivo, and showed increased autophagy flux and higher numbers of autophagosomes. Knockdown of ATG7 or cotreatment with hydroxychloroquine, an autophagy inhibitor, restored sensitivity to 4OHT in both the MCF7/MTA1 and tamoxifen resistant cells. In addition, AMP-activated protein kinase (AMPK) was activated, probably because of an increased AMP:ATP ratio and decreased expression of mitochondrial electron transport complex components. Finally, publicly available breast cancer patient datasets indicate that MTA1 levels correlate with poor prognosis and development of recurrence in patients with breast cancer treated with tamoxifen. Overall, our findings demonstrated that MTA1 induces AMPK activation and subsequent autophagy that could contribute to tamoxifen resistance in breast cancer. 相似文献
6.
Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells 总被引:7,自引:0,他引:7
下载免费PDF全文

Jones JC Turpin EA Bultmann H Brandt CR Schultz-Cherry S 《Journal of virology》2006,80(24):11960-11967
Influenza A viruses continue to cause widespread morbidity and mortality. There is an added concern that the highly pathogenic H5N1 influenza A viruses, currently found throughout many parts of the world, represent a serious public health threat and may result in a pandemic. Intervention strategies to halt an influenza epidemic or pandemic are a high priority, with an emphasis on vaccines and antiviral drugs. In these studies, we demonstrate that a 20-amino-acid peptide (EB, for entry blocker) derived from the signal sequence of fibroblast growth factor 4 exhibits broad-spectrum antiviral activity against influenza viruses including the H5N1 subtype in vitro. The EB peptide was protective in vivo, even when administered postinfection. Mechanistically, the EB peptide inhibits the attachment to the cellular receptor, preventing infection. Further studies demonstrated that the EB peptide specifically binds to the viral hemagglutinin protein. This novel peptide has potential value as a reagent to study virus attachment and as a future therapeutic. 相似文献
7.
Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection 总被引:2,自引:0,他引:2
下载免费PDF全文

Dengue virus infects target cells by attaching to a cell surface receptor through the envelope (E) glycoprotein, located on the surface of the viral membrane. On Vero and BHK cells, heparan sulfate (HS) moieties of proteoglycans are the receptors for dengue virus; however, additional proteins have also been described as putative dengue virus receptors on C6/36, HL60, and BM cells. HS can also act as a receptor for other types of viruses or as an attachment molecule for viruses that require additional host cell molecules to allow viral penetration. In this study we searched for molecules other than HS that could participate in dengue virus infection of Vero cells. Labeled dengue 4 virus bound with high affinity to two molecules of 74 and 44 kDa. Binding of dengue virus to the 74-kDa molecule was susceptible to protease and sodium periodate treatment and resistant to heparinase treatments. Lectins such as concanavalin A and wheat germ agglutinin prevented dengue virus binding to both the 74- and the 44-kDa protein in overlay assays, while phytohemagglutinin P did not affect binding, suggesting that carbohydrate residues (alpha-mannose or N-acetylglucosamine) are important in virus binding to host cells. Protease susceptibility, biotin labeling, and immunofluorescence with a polyclonal antibody raised against the 74-kDa protein consistently identified the protein on the surfaces of Vero cells. Moreover, the antibody against the 74-kDa protein was able to inhibit dengue virus infection. These data suggest that HS might serve as a primary receptor, probably concentrating virus particles on the surfaces of Vero cells, and then other molecules, such as the 74-kDa protein, might participate as coreceptors in viral penetration. The 74-kDa protein possibly constitutes part of a putative receptor complex for dengue virus infection of Vero cells. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(23):3987-3988
Comment on: Peña-Llopis S, et al. EMBO J 2011; 30:3242-58. 相似文献
9.
We have characterized the viral RNA conformation in wild-type, protease-inactive (PR-) and SL1-defective (DeltaDIS) human immunodeficiency virus type 1 (HIV-1), as a function of the age of the viruses, from newly released to grown-up (>or=24 h old). We report evidence for packaging HIV-1 genomic RNA (gRNA) in the form of monomers in PR- virions, viral RNA rearrangement (not maturation) within PR- HIV-1, protease-dependent formation of thermolabile dimeric viral RNAs, a new form of immature gRNA dimer at about 5 h post virion release, and slow-acting dimerization signals in SL1-defective viruses. The rates of gRNA dimer formation were >or=3-fold and >or=10-fold slower in DeltaDIS and PR- viruses than in wild-type, respectively. Thus, the DIS, i.e. the palindrome in the apical loop of SL1, is a dimerization initiation signal, but its role can be masked by one or several slow-acting dimerization site(s) when grown-up SL1-inactive virions are investigated. Grown-up PR- virions are not flawless models for immature virions because gRNA dimerization increases with the age of PR- virions, indicating that the PR- mutation does not "freeze" gRNA conformation in a nascent primordial state. Our study is the first on gRNA conformation in newly released mutant or primate retroviruses. It shows for the first time that the packaged retroviral gRNA matures in more than one step, and that formation of immature dimeric viral RNA requires viral protein maturation. The monomeric viral RNAs isolated from budding HIV-1, as modeled by newly released PR- virions, may be seen as dimers that are much more fragile than thermolabile dimers. 相似文献
10.
11.
Escobar ML Echeverría OM Ortíz R Vázquez-Nin GH 《Apoptosis : an international journal on programmed cell death》2008,13(10):1253-1266
We studied the alterations of dying oocytes in 1–28 days old rats using TUNEL method, immunolocalizations of active caspase
3, lamp1, localization of acid phosphatase, and DAPI staining. All procedures were performed in adjacent sections of each
oocyte. In most dying oocytes exist simultaneously features of apoptosis as active caspase 3 and DNA breaks, and a large increase
of lamp1 and acid phosphatase characteristic of autophagy. Large clumps of compact chromatin and membrane blebbing were absent.
Electron microscope observations demonstrated the presence of small clear vesicles and autophagolysosomes. All these features
indicate that a large number of oocytes are eliminated by a process sharing features of apoptosis and autophagy. In dying
oocytes of new born rats the markers of apoptosis predominate over those of autophagy. However, fragmentation and apoptotic
bodies were not found. These features suggest that in different cytophysiological conditions the processes of cell death may
be differently modulated. 相似文献
12.
We have previously reported that cathepsin L mRNA is present in unfertilized eggs of Sarcophaga peregrina (flesh fly) as a maternal mRNA, which suggests that cathepsin L is required for embryogenesis. Now we have identified an egg protein, with a molecular mass of 100 kDa, that is extremely susceptible to cathepsin L digestion and which disappears rapidly as the embryos develop. We purified this protein to homogeneity, cloned its cDNA, and found that it contained a consensus sequence for the active site of tyrosine phosphatase. In fact this protein showed tyrosine phosphatase activity, indicating that it is a novel tyrosine phosphatase. The expression and subsequent disappearance of this protein, which we have named egg-derived tyrosine phosphatase (EDTP), may be indispensable for embryogenesis of Sarcophaga. 相似文献
13.
Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4(+) and CD8(+) T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease. 相似文献
14.
Di Ge Lei Han ShuYa Huang Nan Peng PengChong Wang Zheng Jiang Jing Zhao Le Su ShangLi Zhang Yun Zhang HsiangFu Kung BaoXiang Zhao JunYing Miao 《Autophagy》2014,10(6):957-971
MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy. 相似文献
15.
Anding Zhang Bo Chen Xiaofeng Mu Yaxin Zhao Pei Zheng Huanchun Chen & Meilin Jin 《FEMS microbiology letters》2009,295(1):17-22
Streptococcus suis serotype 2 (SS2) is a porcine and human pathogen with adhesive and invasive properties. The shortage of studies on the pathogenesis mechanisms of SS2 has made it very difficult to control infection with this pathogen. Three novel in vivo -induced antigens were identified using serological proteome analysis of the SS2 cell wall-associated proteins – SecA, autolysin and ZnuA – the upregulation of which in vivo relative to in vitro was shown by real-time PCR analysis. The in vivo -induced expression of znuA was also confirmed by the fact that the purified recombinant ZnuA could be recognized not by hyperimmune sera but by convalescent sera. This is, to the best of the authors' knowledge, the first report using an immunoproteomic method to identify in vivo -induced antigens of SS2. 相似文献
16.
Autophagy is a self-digestion pathway essential for maintaining cellular homeostasis and cell survival and for degrading intracellular pathogens. Human immunodeficiency virus-1 (HIV-1) may utilize autophagy for replication as the autophagy-related protein-7 (ATG-7), microtubule-associated protein 1 light chain 3, ATG-12, and ATG-16L2 are required for productive HIV-1 infection; however, the effects of autophagy induction on HIV-1 infection are unknown. HIV-1-infected individuals have lower levels of 1α,25-dihydroxycholecalciferol, the hormonally active form of vitamin D, than uninfected individuals. with the lowest concentrations found in persons with AIDS. Using human macrophages and RNA interference for ATG-5 and Beclin-1 and chemical inhibition of phosphatidylinositol 3-kinase, we have found that physiologically relevant concentrations of 1α,25-dihydroxycholecalciferol induce autophagy in human macrophages through a phosphatidylinositol 3-kinase-, ATG-5-, and Beclin-1-dependent mechanism that significantly inhibits HIV-1 replication in a dose-dependent manner. We also show that the inhibition of basal autophagy inhibits HIV-1 replication. Furthermore, although 1α,25-dihydroxycholecalciferol induces the secretion of human cathelicidin, at the concentrations produced in vitro, cathelicidin does not trigger autophagy. Our findings support an important role for autophagy during HIV-1 infection and provide new insights into novel approaches to prevent and treat HIV-1 infection and related opportunistic infections. 相似文献
17.
18.
《Autophagy》2013,9(6):957-971
MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy. 相似文献
19.
Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response 总被引:2,自引:0,他引:2
N P Restifo F Esquivel A L Asher H St?tter R J Barth J R Bennink J J Mulé J W Yewdell S A Rosenberg 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(4):1453-1459
MHC class I-restricted CTL play a central role in the immune response against methylcholanthrene (MCA)-induced sarcomas in mice. We, therefore, hypothesized that MCA-induced tumors may evade immune recognition by failing to present Ag to CD8+ CTL. Of a number of previously described MCA-induced sarcomas, one, MCA 101, fails to induce CTL, is nonimmunogenic, and grows rapidly and lethally in nonimmunosuppressed recipients. To better understand the nonimmunogenicity of MCA 101 we examined its ability to present foreign Ag to CTL. Unlike immunogenic sarcomas, MCA 101 failed to present endogenously synthesized influenza virus Ag to influenza virus-specific CTL. The deficiency in presentation of endogenous Ag by MCA 101 was attributed to a markedly reduced rate of synthesis of class I molecules because up-regulation of class I synthesis by IFN-gamma greatly increased the presentation of influenza A virus Ag. Despite low levels of cell surface class I expression, MCA 101 presented exogenous peptide Ag to anti-influenza CTL with efficiency similar to immunogenic MCA sarcoma cell lines. These findings could not be attributed to deficiencies in class I assembly or transport, as has been suggested by others who have studied mutant cells with defective Ag presentation. Furthermore, our studies suggest that some tumor cells can escape recognition by CTL and subsequent immune eradication by suppressing presentation of endogenous Ag. 相似文献
20.
Nuclear localization of the adenovirus DNA-binding protein: requirement for two signals and complementation during viral infection. 总被引:12,自引:6,他引:12
下载免费PDF全文

The adenovirus DNA-binding protein (DBP) is an abundant multifunctional protein located primarily in the nuclei of infected cells. To define sequences involved in nuclear transport of DBP, a series of point and small deletion mutants were constructed via oligonucleotide-directed mutagenesis. Two short stretches of basic amino acids located in the amino-terminal domain (amino acids 42 to 46 and 84 to 89) were identified. Their importance, however, depended on the context in which DBP was expressed. Disruption of either site prevented nuclear localization after transient expression in transfected 293 cells, implying that two nuclear localization signals are necessary for transport of this nuclear protein. In contrast, the mutant DBPs synthesized during viral infection were located either primarily in the nucleus or in the nucleus and cytoplasm, depending on the mutation and the stage of the viral infection. Thus, the nuclear localization defect could be complemented by viral infection, perhaps through the interaction of the mutant polypeptide with a virus-encoded or -induced factor(s). 相似文献