首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1), and Regulator of G-protein Signaling 19 (RGS19). As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3-/-, Gpsm1-/-, or Rgs19-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3-/-, and Gpsm1-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor) triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.  相似文献   

2.
3.
4.
Li J  Liu Y  Wang Z  Liu K  Wang Y  Liu J  Ding H  Yuan Z 《Journal of virology》2011,85(13):6319-6333
Autophagy is a conserved eukaryotic mechanism that mediates the removal of long-lived cytoplasmic macromolecules and damaged organelles via a lysosomal degradative pathway. Recently, a multitude of studies have reported that viral infections may have complex interconnections with the autophagic process. The findings reported here demonstrate that hepatitis B virus (HBV) can enhance the autophagic process in hepatoma cells without promoting protein degradation by the lysosome. Mutation analysis showed that HBV small surface protein (SHBs) was required for HBV to induce autophagy. The overexpression of SHBs was sufficient to induce autophagy. Furthermore, SHBs could trigger unfolded protein responses (UPR), and the blockage of UPR signaling pathways abrogated the SHB-induced lipidation of LC3-I. Meanwhile, the role of the autophagosome in HBV replication was examined. The inhibition of autophagosome formation by the autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA duplexes targeting the genes critical for autophagosome formation (Beclin1 and ATG5 genes) markedly inhibited HBV production, and the induction of autophagy by rapamycin or starvation greatly contributed to HBV production. Furthermore, evidence was provided to suggest that the autophagy machinery was required for HBV envelopment but not for the efficiency of HBV release. Finally, SHBs partially colocalized and interacted with autophagy protein LC3. Taken together, these results suggest that the host's autophagy machinery is activated during HBV infection to enhance HBV replication.  相似文献   

5.
《Autophagy》2013,9(6):784-793
Macroautophagy (hereafter referred to as autophagy) is a catabolic pathway to isolate and transport cytosolic components to the lysosome for degradation. Recently, autophagy receptors, like p62/SQSTM1 and NBR1, which physically link autophagic cargo to ATG8/MAP1-LC3/GABARAP family members located on the forming autophagic membranes, have been identified. To identify conditions or compounds that affect autophagy cell systems that efficiently report on autophagic flux are required. Here we describe reporter cell systems based on induced expression of GFP-p62, GFP-NBR1 or GFP-LC3B. The degradation of the fusion proteins was followed after promoter shut off by flow cytometry of live cells. All three fusion proteins were degraded at a basal rate by autophagy. Surprisingly, the basal degradation rate varied for the three reporter fusion proteins. GFP-LC3B was the most stable protein. GFP-NBR1 was most efficiently degraded under basal conditions while degradation of GFP-p62 displayed the strongest response to amino acid starvation. GFP-p62 was found to perform best of the tested reporters. Single cell analysis of autophagic flux by flow cytometry allows estimates of heterogeneous cell populations. The feasibility of this approach was demonstrated using transient overexpression of a dominant negative ULK1 kinase and siRNA-mediated knock-down of LC3B to inhibit autophagic degradation of GFP-p62. The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy. Inducers of autophagy can be identified using rich medium whereas inhibitors are identified under starvation conditions.  相似文献   

6.

Background

Autophagy is a bulk degradation pathway for long-lived proteins, protein aggregates, and damaged organelles. ULK1 protein kinase and Vps34 lipid kinase are two key autophagy regulators that are critical for autophagosome biogenesis. However, it isn’t fully understood how ULK1 regulates Vps34, especially in the context of disease. Polyglutamine expansion in huntingtin (Htt) causes aberrant accumulation of the aggregated protein and disrupts various cellular pathways including autophagy, a lysosomal degradation pathway, underlying the pathogenesis of Huntington’s disease (HD). Although autophagic clearance of Htt aggregates is under investigation as therapeutic strategy for HD, the precise mechanism of autophagy impairment remains poorly understood. Moreover, in-vivo assays of autophagy have been particularly challenging due to lack of reliable and robust molecular biomarkers.

Method

We generated anti-phosphorylated ATG14 antibody to determine ATG14-mediated autophagy regulation; we employed Huntington’s disease (HD) genetic cell models and animal models as well as autophagy reporter animal model to understand autophagy signaling and regulation in vivo. We applied biochemical analysis and molecular biology approaches to dissect the alteration of autophagy kinase activity and regulation.

Results

Here, we demonstrate that ULK1 phosphorylates ATG14 at serine 29 in an mTOR-dependent manner. This phosphorylation critically regulates ATG14-Vps34 lipid kinase activity to control autophagy level. We also show that ATG14-associated Vps34 activity and ULK1-mediated phosphorylation of ATG14 and Beclin 1 are compromised in the Q175 mouse model of Huntington’s disease. Finally, we show that ATG14 phosphorylation is decreased during general proteotoxic stress caused by proteasomal inhibition. This reduction of the specific phosphorylation of ATG14 and Beclin 1 is mediated, in part, by p62-induced sequestration of ULK1 to an insoluble cellular fraction. We show that increased ULK1 levels and phosphor-mimetic mutant ATG14 facilitate the clearance of polyQ mutant in cells.

Conclusion

Our study identifies a new regulatory mechanism for ATG14-Vps34 kinase activity by ULK1, which can be used as valuable molecular markers for in-vivo autophagic activity as well as potential therapeutic target for the clearance of polyglutamine disease protein.
  相似文献   

7.
《Autophagy》2013,9(4):550-567
Osmotic homeostasis is fundamental for most cells, which face recurrent alterations of environmental osmolality that challenge cell viability. Protein damage is a consequence of hypertonic stress, but whether autophagy contributes to the osmoprotective response is unknown. Here, we investigated the possible implications of autophagy and microtubule organization on the response to hypertonic stress. We show that hypertonicity rapidly induced long-lived protein degradation, LC3-II generation and Ptdlns3K-dependent formation of LC3- and ATG12-positive puncta. Lysosomotropic agents chloroquine and bafilomycin A1, but not nutrient deprivation or rapamycin treatment, further increased LC3-II generation, as well as ATG12-positive puncta, indicating that hypertonic stress increases autophagic flux. Autophagy induction upon hypertonic stress enhanced cell survival since cell death was increased by ATG12 siRNA-mediated knockdown and reduced by rapamycin. We additionally showed that hypertonicity induces fast reorganization of microtubule networks, which is associated with strong reorganization of microtubules at centrosomes and fragmentation of Golgi ribbons. Microtubule remodeling was associated with pericentrosomal clustering of ATG12-positive autolysosomes that colocalized with SQSTM1/p62 and ubiquitin, indicating that autophagy induced by hypertonic stress is at least partly selective. Efficient autophagy by hypertonic stress required microtubule remodeling and was DYNC/dynein-dependent as autophagosome clustering was enhanced by paclitaxel-induced microtubule stabilization and was reduced by nocodazole-induced tubulin depolymerization as well as chemical (EHNA) or genetic [DCTN2/dynactin 2 (p50) overexpression] interference of DYNC activity. The data document a general and hitherto overlooked mechanism, where autophagy and microtubule remodeling play prominent roles in the osmoprotective response.  相似文献   

8.
Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.  相似文献   

9.
《Autophagy》2013,9(7):929-935
Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure "autophagic flux" in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3II protein may render possible misinterpretations since LC3II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3II, a technique aptly named the "autophagometer". In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolysosomes and increased LC3II protein levels in mouse skeletal muscle by >100%. The addition of an autophagic stimulus such as dietary restriction or rapamycin led to an additional increase in LC3II above that seen with colchicine alone. Moreover, this increase was not apparent in the absence of a "colchicine block." Using this assay, we evaluated the autophagic response in skeletal muscle upon denervation induced atrophy. Our studies highlight the feasibility of performing an "in vivo autophagometer" study using colchicine in skeletal muscle.  相似文献   

10.
《Autophagy》2013,9(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

11.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

12.
《Autophagy》2013,9(8):1215-1226
Monitoring autophagic flux is important for the analysis of autophagy. Tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) is a convenient assay for monitoring autophagic flux based on different pH stability of EGFP and mRFP fluorescent proteins. However, it has been reported that there is still weak fluorescence of EGFP in acidic environments (pH between 4 and 5) or acidic lysosomes. So it is possible that autolysosomes are labeled with yellow signals (GFP+RFP+ puncta), which results in misinterpreting autophagic flux results. Therefore, it is desirable to choose a monomeric green fluorescent protein that is more acid sensitive than EGFP in the assay of autophagic flux. Here, we report on an mTagRFP-mWasabi-LC3 reporter, in which mWasabi is more acid sensitive than EGFP and has no fluorescence in acidic lysosomes. Meanwhile, mTagRFP-mWasabi-LC3ΔG was constructed as the negative control for this assay. Compared with mRFP-EGFP-LC3, our results showed that this reporter is more sensitive and accurate in detecting the accumulation of autophagosomes and autolysosomes. Using this reporter, we find that high-dose rapamycin (30 μM) will impair autophagic flux, inducing many more autophagosomes than autolysosomes in HeLa cells, while low-dose rapamycin (500 nM) has an opposite effect. In addition, other chemical autophagy inducers (cisplatin, staurosporine and Z18) also elicit much more autophagosomes at high doses than those at low doses. Our results suggest that the dosage of chemical autophagy inducers would obviously influence autophagic flux in cells.  相似文献   

13.
Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure “autophagic flux” in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein 1 light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3-II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3-II protein may render possible misinterpretations since LC3-II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3-II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3-II, a technique aptly named the “autophagometer.” In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolysosomes and increased LC3-II protein levels in mouse skeletal muscle by >100%. the addition of an autophagic stimulus such as dietary restriction or rapamycin led to an additional increase in LC3-II above that seen with colchicine alone. Moreover, this increase was not apparent in the absence of a “colchicine block.” Using this assay, we evaluated the autophagic response in skeletal muscle upon denervation induced atrophy. Our studies highlight the feasibility of performing an “in vivo autophagometer” study using colchicine in skeletal muscle.Key words: autophagy, rapamycin, skeletal muscle  相似文献   

14.
The ABC drug transporters, including ABCG2, are well known for their ability to efflux a wide spectrum of chemotherapeutic agents, thereby conferring a multidrug-resistant phenotype. However, studies over the past several years suggest that the ABC transporters may play additional role(s) in cell survival in the face of stress inducers that are not ABCG2 substrates (i.e., nutrient deprivation, ionizing radiation, rapamycin). The mechanism by which this occurs is largely unknown. In the present study, using several cancer cell lines and their ABCG2-overexpressing sublines, we show that cells overexpressing ABCG2 were more resistant to these stressors. This resistance was associated with an elevated level of autophagy flux, as measured by a higher rate of SQSTM1/p62 degradation and greater accumulation of LC3-II when compared to parental cells. Knockdown of ABCG2 reduced autophagic activity in resistant cells to a level similar to that observed in parental cells, confirming that the enhanced autophagy was ABCG2-dependent. Moreover, using cell viability, apoptosis, and clonogenic assays, we demonstrated that the ABCG2-expressing cells were more resistant to amino acid starvation and radiation-induced cell death. Importantly, knockdown of the critical autophagy factors ATG5 and ATG7 greatly reduced cell survival, verifying that enhanced autophagy was critical for this effect. Taken together, these data indicate that autophagy induced by various stressors is enhanced/accelerated in the presence of ABCG2, resulting in delayed cell death and enhanced cell survival. This defines a new role for this transporter, one with potential clinical significance.  相似文献   

15.
《Autophagy》2013,9(12):2115-2125
Colchicine treatment is associated with an autophagic vacuolar myopathy in human patients. The presumed mechanism of colchicine-induced myotoxicity is the destabilization of the microtubule system that leads to impaired autophagosome-lysosome fusion and the accumulation of autophagic vacuoles. Using the MTOR inhibitor rapamycin we augmented colchicine’s myotoxic effect by increasing the autophagic flux; this resulted in an acute myopathy with muscle necrosis. In contrast to myonecrosis induced by cardiotoxin, myonecrosis induced by a combination of rapamycin and colchicine was associated with accumulation of autophagic substrates such as LC3-II and SQSTM1; as a result, autophagic vacuoles accumulated in the center of myofibers, where LC3-positive autophagosomes failed to colocalize with the lysosomal protein marker LAMP2. A similar pattern of central LC3 accumulation and myonecrosis is seen in human patients with colchicine myopathy, many of whom have been treated with statins (HMGCR/HMG-CoA reductase inhibitors) in addition to colchicine. In mice, cotreatment with colchicine and simvastatin also led to muscle necrosis and LC3 accumulation, suggesting that, like rapamycin, simvastatin activates autophagy. Consistent with this, treatment of mice with four different statin medications enhanced autophagic flux in skeletal muscle in vivo. Polypharmacy is a known risk factor for toxic myopathies; our data suggest that some medication combinations may simultaneously activate upstream autophagy signaling pathways while inhibiting the degradation of these newly synthesized autophagosomes, resulting in myotoxicity.  相似文献   

16.
Dissecting the dynamic turnover of GFP-LC3 in the autolysosome   总被引:1,自引:0,他引:1  
Determination of autophagic flux is essential to assess and differentiate between the induction or suppression of autophagy. Western blot analysis for free GFP fragments resulting from the degradation of GFP-LC3 within the autolysosome has been proposed as one of the autophagic flux assays. However, the exact dynamics of GFP-LC3 during the autophagy process are not clear. Moreover, the characterization of this assay in mammalian cells is limited. Here we found that lysosomal acidity is an important regulating factor for the step-wise degradation of GFP-LC3, in which the free GFP fragments are first generated but accumulate only when the lysosomal acidity is moderate, such as during rapamycin treatment. When the lysosomal acidity is high, such as during starvation in Earle's balanced salt solution (EBSS), the GFP fragments are further degraded and thus do not accumulate. Much to our surprise, we found that the level of free GFP fragments increased in the presence of several late stage autophagy inhibitors, such as chloroquine or E64D plus pepstatin A. Furthermore, the amount of free GFP fragments depends on the concentrations of these inhibitors. Unsaturating concentrations of chloroquine or bafilomycin A1 increased the level of free GFP fragments while saturating concentrations did not. Data from the present study demonstrate that GFP-LC3 is degraded in a step-wise fashion in the autolysosome, in which the LC3 portion of the fusion protein appears to be more rapidly degraded than GFP. However, the amount of free GFP fragments does not necessarily correlate with autophagic flux if the lysosomal enzyme activity and pH are changed. Therefore, caution must be used when conducting the GFP-LC3 cleavage assay as a determinant of autophagic flux. In order to accurately assess autophagy, it is more appropriate to assess GFP-LC3 cleavage in the presence or absence of saturating or unsaturating concentrations of chloroquine or bafilomycin A1 together with other autophagy markers, such as levels of p62 and endogenous LC3-II.  相似文献   

17.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.  相似文献   

18.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment.  相似文献   

19.
《Autophagy》2013,9(2):356-371
Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux. To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon induction of autophagy with both treatments affecting widely different cellular processes. The identification of dynamic phosphorylation already after 2 min demonstrates that the earliest events in autophagy signaling occur rapidly after induction. The data was subjected to extensive bioinformatics analysis revealing regulated phosphorylation sites on proteins involved in a wide range of cellular processes and an impact of the treatments on the kinome. To approach the potential function of the identified phosphorylation sites we performed a screen for MAP1LC3-interacting proteins and identified a group of binding partners exhibiting dynamic phosphorylation patterns. The data presented here provide a valuable resource on phosphorylation events underlying early autophagy induction.  相似文献   

20.
Graef M  Nunnari J 《The EMBO journal》2011,30(11):2101-2114
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号