首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
孙源超  秦训思  陈宏  沈伟 《遗传》2014,36(5):447-455
细胞自噬是一种进化上保守的, 通过吞噬降解自身大分子物质或细胞器来维持细胞生存的活动。自噬与多种生命活动息息相关, 其功能的紊乱往往会导致肿瘤发生、神经退行性疾病、微生物感染等疾病。研究表明, 表观遗传修饰可以调控细胞自噬的发生, 并在细胞自噬的生物学功能调节过程中发挥重要作用, 但具体调控机制尚需进一步探究。文章综述了细胞自噬发生过程中存在的表观遗传效应, 包括组蛋白乙酰化对细胞自噬激活或抑制的负反馈调控, 通过DNA甲基化调节自噬相关基因活性来影响细胞自噬的发生, miRNA通过靶向调节自噬相关基因表达来影响组蛋白修饰, 从而调控细胞自噬的发生及作用过程等, 旨在为人们进一步研究细胞自噬发生过程中的表观遗传修饰及其机制提供信息依据。  相似文献   

2.
Kalie E  Tooze SA 《EMBO reports》2012,13(3):175-177
The second EMBO Conference Series meeting on 'Autophagy in Health and Disease' took place in November 2011 in Israel. It brought together researchers from around the globe to cover the biogenesis of the autophagosome, as well as related topics including the regulation of autophagy, selective autophagy and the role of autophagy in disease and cell death.  相似文献   

3.
细胞自噬及真菌中自噬研究概述   总被引:1,自引:0,他引:1  
闫思源  姜学军 《菌物学报》2015,34(5):871-879
细胞自噬是真核生物中广泛存在的、主要依赖于溶酶体或液泡的保守的降解途径,通过降解细胞内过多或异常的蛋白、细胞器等以维持正常的细胞功能。近10年来自噬研究方面的飞速进展显示出自噬与癌症、神经退行性疾病、衰老及心脏病等人类疾病相关。与此同时,自噬在丝状真菌的生长、形态和发育等方面发挥着重要作用,特别是在丝状真菌的细胞分化过程中,自噬起到了关键性作用,如致病性生长、程序性细胞死亡及孢子形成。本文主要论述了什么是自噬,自噬的检测方法及以真菌为对象的自噬研究进展。  相似文献   

4.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   

5.
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.  相似文献   

6.
Autophagy influences numerous cellular processes, including innate and adaptive immunity against intracellular pathogens. However, some viruses, including dengue virus (DENV), usurp autophagy to enhance their replication. The mechanism for a positive role of autophagy in DENV infection is unclear. We present data that DENV induction of autophagy regulates cellular lipid metabolism. DENV infection leads to an autophagy-dependent processing of lipid droplets and triglycerides to release free fatty acids. This results in an increase in cellular β-oxidation, which generates ATP. These processes are required for efficient DENV replication. Importantly, exogenous fatty acids can supplant the requirement of autophagy in DENV replication. These results define a role for autophagy in DENV infection and provide a mechanism by which viruses can alter cellular lipid metabolism to promote their replication.  相似文献   

7.
Lipid oxidation and autophagy in yeast   总被引:1,自引:0,他引:1  
Autophagy, a process involved in the degradation and the recycling of long-lived proteins and organelles to survive nitrogen starvation, is generally non-selective. However, recent data suggest that selective forms of autophagy exist, that are able to specifically target several organelles, including mitochondria. Conversely, mitochondrial alterations could trigger autophagy. Such a selective form of autophagy might be involved in the elimination of damaged mitochondria. We reported previously that, mitochondria were early targets of rapamycin-induced autophagy. Here we report that rapamycin-induced autophagy is accompanied by the early production of reactive oxygen species and by the early oxidation of mitochondrial lipid. Inhibition of these oxidative effects by resveratrol largely impaired autophagy of both cytosolic proteins and mitochondria, and delayed subsequent cell death. These results support a role of mitochondrial oxidation events in the activation of autophagy.  相似文献   

8.
植物病原真菌的自噬   总被引:1,自引:0,他引:1  
刘伟  杜春梅 《微生物学报》2021,61(11):3363-3376
作为真核生物中普遍存在的现象,自噬不但实现了对细胞内物质的降解和回收利用,而且与植物病原真菌早期侵染阶段的附着胞发育、膨压升高、菌丝体形成、完成侵染等一系列过程密切相关,并且发挥了重要的作用。本文归纳了植物病原真菌自噬的相关基因和自噬过程;总结了自噬对病原真菌生长发育、致病力的调控和影响;概括了病原真菌自噬所涉及的信号通路;阐明了自噬影响植物病原真菌侵染过程的主要分子机制。为今后以自噬相关基因或蛋白作为靶点来筛选抑制病原真菌侵染的新型药物提供新的策略和思路。  相似文献   

9.
DNA damage and autophagy   总被引:1,自引:0,他引:1  
Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.  相似文献   

10.
Helene Knævelsrud 《FEBS letters》2010,584(12):2635-31696
Ubiquitinated protein aggregates are hallmarks of a range of human diseases, including neurodegenerative, liver and muscle disorders. These protein aggregates are typically positive for the autophagy receptor p62. Whereas the ubiquitin-proteasome system (UPS) degrades shortlived and misfolded ubiquitinated proteins that are small enough to enter the narrow pore of the barrel-shaped proteasome, the lysosomal pathway of autophagy can degrade larger structures including entire organelles or protein aggregates. This degradation requires autophagy receptors that link the cargo with the molecular machinery of autophagy and is enhanced by certain posttranslational modifications of the cargo. In this review we focus on how autophagy clears aggregate-prone proteins and the relevance of this process to protein aggregate associated diseases.  相似文献   

11.
《Autophagy》2013,9(5):642-644
The transparency, external development and simple drug administration of zebrafish embryos makes them a useful model for studying autophagy during embryonic development in vivo. Cloning of zebrafish lc3 and generation of a transgenic GFP-Lc3 fish line provide excellent tools to monitor autophagy in this organism.1 This protocol discusses several convenient autophagy assays in zebrafish, including immunoblotting of Lc3 lipidation, microscopy imaging of GFP-Lc3 and lysosomal staining.  相似文献   

12.
DAP-kinase (DAPK) is a Ca2+-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.  相似文献   

13.
A role for Rac3 GTPase in the regulation of autophagy   总被引:1,自引:0,他引:1  
The process of autophagy is situated at the intersection of multiple cell signaling pathways, including cell metabolism, growth, and death, and hence is subject to multiple forms of regulation. We previously reported that inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt), which catalyzes the final step in the post-translational prenylation of so-called CAAX proteins, results in the induction of autophagy which enhances cell death in some cancer cells. In this study, using siRNA-mediated knockdown of a group of small GTPases that are predicted Icmt substrates, we identify Rac3 GTPase as a negative regulator of the process of autophagy. Knockdown of Rac3, but not the closely related isoforms Rac1 and Rac2, results in induction of autophagy. Ectopic expression of Rac3, significantly rescues cells from autophagy and cell death induced by Icmt inhibition, strengthening the notion of an isoform-specific autophagy regulatory function of Rac3. This role of Rac3 was observed in multiple cell lines with varying Rac subtype expression profiles, suggesting its broad involvement in the process. The identification of this less-studied Rac member as a novel regulator provides new insight into autophagy and opens opportunities in identifying additional regulatory inputs of the process.  相似文献   

14.
Autophagy is a conserved cellular degradative pathway that is now established to be a vital part of the host immune response to microbial infection. Autophagy can directly eliminate intracellular pathogens by mediating their delivery to lysosomes. Canonical autophagy is characterized by the formation of a double-membrane autophagosome and the involvement of over 35 autophagy-related proteins (Atgs), including a commonly used autophagosome marker in mammalian cells, LC3. Recent studies have shown that a subset of autophagy components can lead to LC3 conjugation onto phagosomes. This process of LC3-associated phagocytosis (LAP) results in the degradation of the cargo by promoting phagosome fusion with lysosomes. Other components of the autophagy machinery also play roles in immunity that are distinct from the canonical autophagy and LAP pathways. This minireview highlights the complicated relationship between autophagy components and intracellular bacteria, including bacterial targeting mechanisms and the interaction between autophagy and effectors/toxins secreted by bacteria.  相似文献   

15.

Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.

  相似文献   

16.
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.  相似文献   

17.
Nassif M  Hetz C 《Autophagy》2011,7(4):450-453
Several neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions in the brain containing specific misfolded proteins. Strategies to decrease the load of protein aggregates and oligomers are considered relevant targets for therapeutic intervention. Many studies indicate that macroautophagy is a selective and efficient mechanism for the degradation of misfolded mutant proteins related to neurodegeneration, without affecting the levels of the corresponding wild-type form. In fact, activation of autophagy by rapamycin treatment decreases the accumulation of protein aggregates and alleviates disease features in animal models of Huntington disease and other disorders affecting the nervous system. Recent evidence, however, indicates that the expression of several disease-related genes may actually impair autophagy activity at different levels, including omegasome formation, substrate recognition, lysosomal acidity and autophagosome membrane nucleation. A recent report from Zhang and co-workers indicates that treatment of an amyotrophic lateral sclerosis (ALS) mouse model with rapamycin actually exacerbates neuronal loss and disease progression, associated with enhanced apoptosis. This study reflects the need for a better understanding of the contribution of autophagy to ALS and other neurodegenerative diseases since this pathway may not only operate as a cleaning-up mechanism. Then, autophagy impairment may be part of the pathological mechanisms underlying the disease, whereas augmenting autophagy levels above a certain threshold could lead to detrimental effects in neuronal function and survival. Combinatorial strategies to repair the autophagy deficit and also enhance the activation of the pathway may result in a beneficial impact to decrease the content of protein aggregates and damaged organelles, improving neuronal function and survival.  相似文献   

18.
《Autophagy》2013,9(4):450-453
Several neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions in the brain containing specific misfolded proteins. Strategies to decrease the load of protein aggregates and oligomers are considered relevant targets for therapeutic intervention. Many studies indicate that macroautophagy is a selective and efficient mechanism for the degradation of misfolded mutant proteins related to neurodegeneration, without affecting the levels of the corresponding wild-type form. In fact, activation of autophagy by rapamycin treatment decreases the accumulation of protein aggregates and alleviates disease features in animal models of Huntington disease and other disorders affecting the nervous system. Recent evidence, however, indicates that the expression of several disease-related genes may actually impair autophagy activity at different levels, including omegasome formation, substrate recognition, lysosomal acidity and autophagosome membrane nucleation. A recent report from Zhang and co-workers indicates that treatment of an amyotrophic lateral sclerosis (ALS) mouse model with rapamycin actually exacerbates neuronal loss and disease progression, associated with enhanced apoptosis. This study reflects the need for a better understanding of the contribution of autophagy to ALS and other neurodegenerative diseases since this pathway may not only operate as a cleaning-up mechanism. Then, autophagy impairment may be part of the pathological mechanisms underlying the disease, whereas augmenting autophagy levels above a certain threshold could lead to detrimental effects in neuronal function and survival. Combinatorial strategies to repair the autophagy deficit and also enhance the activation of the pathway may result in a beneficial impact to decrease the content of protein aggregates and damaged organelles, improving neuronal function and survival.  相似文献   

19.
《Autophagy》2013,9(4):451-458
Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments.  相似文献   

20.
Autophagy is a starvation response in eukaryotes by which the cell delivers cytoplasmic components to the vacuole for degradation, and is mediated by a double membrane structure called the autophagosome. We have previously proposed that the specific combination of COPII like components, including Sec24p, is required for autophagy (Ishihara, N. et al. (2001) Mol. Biol. Cell, 12: 3690-3702). The autophagic defect in sec24 deleted mutant cells was, however, suppressed upon the recovery of its secretory flow by the overexpression of its homologue, Sfb2p. We have also reported that the autophagic defect is not observed in sec13 and sec31 mutants, a phenomenon that can be explained by the fact that starvation stress suppresses the secretory defect of these mutants. These observations indicate that the active flow in the early secretory pathway plays an important role in autophagy; that is, autophagy proceeds in the presence, but not in the absence of the early secretory flow. Both autophagy and its closely related cytoplasm to vacuole-targeting (Cvt) pathway occur through a pre-autophagosomal structure (PAS), and since the PAS and the functional Cvt pathway exist in all sec mutants, the early secretory pathway must be involved specifically in autophagy, subsequent to PAS formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号