首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The purpose of this study was to investigate the distribution of total and bioavailable metals (Cd, Cu, Cr, Fe, Mn, Pb and Zn) in sediments of the Abelardo L. Rodríguez (ALR) dam located in the eastern part of the city of Hermosillo, Sonora, Mexico. Seventy two sediment samples were collected in 2009 during four sampling campaigns in February (spring), May (summer), September (end of summer) and December (winter) in five different areas within the dam surface (Zones I, II, III, IV and V), including the Gate Station. Determination of heavy metals was carried out by flame atomic absorption spectrophotometry (FAAS). The results indicate high levels of total heavy metals in the following order: Fe>Mn>Zn>Pb>Cu>Cr>Cd. This is indicative of the impact of human activities located in areas surrounding the reservoir, specifically urban and industrial. The distribution and state of accumulation of trace metals in the sediment is largely dominated by the residual and Fe/Mn oxides geochemical phases. Fraction I (exchangeable) also presented high concentrations of metals (Cu, Fe, Mn and Zn). From enrichment factor analysis, the study area is prevalently enriched in Cd, Cu and Pb in Zones I, II, III, IV and Gate Station. This indicates that the sediments are impacted by anthropogenic activities such as downloads, domestic and industrial wastewater. Geoaccumulation index (Igeo) indicates that Zones I, II, III, IV and V (including Gate Station) do not show contamination by Cr, Fe, Mn and Zn. However, there is a moderate to heavy contamination by Cd, Cu and Pb (Igeo: 2–4) in all areas of study. The comparison between the results obtained with the sediment quality criteria (LEL and SEL), indicate that Zones I, II, III, IV, V and Gate Station, are contaminated with Cd, Cu and Pb, and severely contaminated by Fe.

The elevated levels of heavy metals detected in the sediment of the ALR Dam require special attention, since in the exchangeable fraction, the metals are specifically adsorbed on the sediment and can be released when the ionic composition of water changes. However, additional studies are required in this reservoir on the chemistry and toxicology of metals for a full assessment of potential risks posed to biota and man.  相似文献   

3.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

4.
Heavy metals in the site received industrial effluents were investigated to assess the pollution levels, distribution of metal among solid-phase fractions and possible metal sources. The soil samples at different depths of 0–5, 5–25 and 25–50 cm were collected and analyzed for Fe, Mn, Cd, Zn, Cu, Ni and Pb. Among all metals, Cd content was not detected in all soil samples. The average contents of Pb and Zn are higher than the corresponding values of common range in earth crust. Meanwhile, the maximum contents of Cu and Zn are higher than those of Dutch optimum value but lower that the Dutch protection act target value. The maximum contents of Cu, Pb and Zn are higher than the average shale value. The most investigated heavy metals are mostly found in the potentially labile pool (>50.0%) including metal bound to carbonate, Fe/Mn oxides, or organically fractions. Enrichment factor (EF) in combination with multivariate analysis including principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggest that Mn and Ni associated with Fe in the soil samples were primarily originated from lithogenic sources. Pb was largely derived only from anthropogenic source, while Cu and Zn in the soil samples were controlled by the mixed natural and anthropogenic sources. These results suggest that discharging the industrial effluents into dumping site increased pollution level of Pb, Zn and Cu as well as enhanced their potentially labile pool that may be responsible for occurring potential toxic impacts on environmental quality.  相似文献   

5.
We analyzed the leaching behavior and chemical speciation of heavy metals in a landfill of electrolytic manganese residue (EMR). The results showed that most of Pb, Cr, As, Cu, and Zn were associated with F4 (residual fraction) and Mn and Co were mainly present in F1 (exchangeable and weak acid soluble fraction). In order to evaluate potential risks of heavy metals to the landfill, modified potential ecological risk index (MPER), potential ecological risk index (PER), index of geo-accumulation (Igeo) assessment, and risk assessment code (RAC) were employed. Ranking order for potential risk based on RAC assessment is Mn > Co > Zn > Cu > Cr = As = Pb. Results from Igeo assessment indicates that Mn poses a potential for high risk to human health and the ecosystem. MPER, which integrates the characteristics of PER and RAC, shows that the potential risks of heavy metals are in the order of As > Cu > Mn > Co > Pb > Cr > Zn. The analysis indicates that Mn, Co, As, and Cu within EMR pose a potential risk when this material is placed in landfills and that these metals should be given particular attention when managing the land disposal of EMR.  相似文献   

6.
Abstract

A preliminary study on soil contamination with heavy metals and As based on solid phase speciation according to the Tessier scheme and the influence on groundwater in an area under anthropogenic influence (Bozanta-Baia Mare, Romania) was conducted. The partitioning of Al, As, Cd, Cu, Fe, Mn, Pb and Zn in five fractions is discussed in relation to soil characteristics, pH, organic matter content, mineralogical composition and distribution of the same elements in airborne particulate matter. The airborne particulate matter contains high quantities of As, Cd, Cu, Pb and Zn as exchangeable fraction. The sequential extraction carried out on soil samples revealed the main role of Fe-Mn oxides surface in the immobilization of metals. Organic matter has a specific role in complexation of Cu, Pb, As and Al, since high contents of these metals were recovered in the oxidizable fraction. Cadmium has a high selectivity for carbonate minerals. The amendment of soil with natural fertilizer increases the exchangeable fraction of metals with the highest toxicity. The available fraction for plants (exchangeable + carbonate-bound species) exceeded the alert values in soil, therefore the continuous monitoring of the area is necessary. The soil is unsuitable for agricultural use due to high contamination on surface with toxic elements resulted from anthropogenic activities. Groundwater is contaminated with very toxic elements (As, Cd and Pb) but also with Cu, Mn and Zn and is unsuitable as supply for drinking water.  相似文献   

7.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

8.
Tajan River is among the most significant rivers of the Caspian Sea water basin. In this study, the concentration of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in brain, heart, liver, gill, bile, and muscle of Rutilus frisii kutum which has great economic value in the Mazandaran state. Trace element levels in fish samples were analyzed by means of atomic absorption spectrometry. Nearly all non-essential metals levels (Ni, Pb, Cd) detected in tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, non-essential metals (Ni, Pb) were so much higher in muscle than the essential metals (Cu, Zn, and Mn) except Fe, which was higher than other metals in nearly all parts, except in gills. Fe distribution pattern in tissues was in order of heart > brain > liver > muscle > bile > gill. Distribution patterns of metal concentrations in the muscle of fish as a main edible part followed the sequence: Fe > Pb > Ni > Cu > Mn > Zn > Cd.  相似文献   

9.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

10.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

11.
Abstract

The accumulation of heavy metals in soil is a serious environmental problem. The risk of metals in soil is associated critically with their species. Operationally determined speciation analysis of Cr, Mn, Ni, Cu, Zn, Sb, Cd and Pb was carried out in the area of non-ferrous metals-smelting in the North China Plain, using inductively coupled plasma-mass spectroscopy after sequential chemical extraction. The average potential mobility fraction was calculated. The average potential mobility of the metals had the following order: Cd(44.7%) > Pb(29.6%) > Mn(14.8%) > Zn(12.5%) > Cu(5.9%) > Sb(5.0%) > Ni(2.1%) > Cr(0.8%). It is concluded that there is a distinct spatial heterogeneity in the concentration of heavy metals in the studied area. The results indicate that the polluting heavy metals, in particular Cd and Pb, have high potential mobility.  相似文献   

12.
南京城市土壤重金属含量及其影响因素   总被引:82,自引:5,他引:77  
研究了南京城市土壤重金属含量、来源及其与土壤性质的关系。结果表明,南京城市土壤中,Fe、Ni、Co、V污染不明显,但受到了不同程度的Mn、Cr、Cu、Zn、Pb污染,其中:Pb污染非常严重;重金属在土壤剖面分布没有规律性;Fe、Ni、Co、V元素主要来源于原土壤物质,Cu、Zn、Pb、Cr元素主要来源于人为输入,Mn可能在不同的土壤中来源不同;Fe、Cr、Ni、Co、V元素含量之间均呈极显著正相关,Cu、Zn、Pb、Cr元素含量之间均呈极显著正相关。Fe、Co、V、Ni含量与粘粒含量、CEC呈极显著正相关;Cu、Zn、Pb含量与粘粒含量呈极显著负相关;Cu、Zn、Pb、Cr含量与有机碳呈极显著正相关,Pb含量与pH呈极显著正相关。  相似文献   

13.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

14.
The mobility of selected heavy metals in contaminated soil at a previous industrial site in Brisbane, Australia, was assessed using a sequential extraction technique. Copper, Pb, Zn, Cr, Fe, and Mn were extracted from the soil solution/exchangeable, carbonate, Fe and Mn oxides, and organic matter fractions. The amounts of metals adsorbed by these fractions were used as an indicator of each metal's mobility in the soil. Copper and Pb were largely adsorbed by the organic and oxide fractions, while a significant amount of Zn was extracted from the carbonate fraction. The potential mobility and biological availability of the metals in these soils is Zn > Cr = Cu ≈ Pb. Soils were also analyzed using the toxicity characteristic leaching procedure (TCLP) to determine whether the contaminated soil could be disposed of by landfilling. The leachability of all metals from the soils was very low, with metal concentrations below the allowable limits. The TCLP also showed that Zn was the most mobile metal in these soils. An environmental and health risk assessment was undertaken, and it was concluded that the site did not represent a risk despite the “total”; concentrations of some metals being up to 40 times the investigation threshold value adopted in Australia.  相似文献   

15.
Abstract

Kolkata wetlands are the largest sewage fed wetlands in the world. They have been used for aquaculture since 1960. Geochemical distribution of heavy metals (Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al) has been studied in surface sediments using single and sequential extractions techniques. The metal concentrations in sediments were in the following order: Fe>Al> Mn>Zn>Cu> Pb>Cr> Ni, and the average concentrations were 29 μg g?1, 54 μg g?1, 328 μg g?1, 32747 μg g?1, 169 μg g?1, 38 μg g?1, 25 μg g?1 and 23371 μg g?1 dry weights for Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al, respectively. Water-soluble percentages of the trace elements are quite low (<0.01–3.75%) but in the presence of chelating agents in the sediments increase the bioavailability of trace elements (2–58%). About 40% of trace elements are in the stable form as a residual fraction of the sediment and more than 50% (nonresidual fraction) metal contamination of the Kolkata wetland sediments were from anthropogenic inputs. The contamination risks of Cr, Mn, Zn, Pb, and Ni are high as their potential availabilities are 70.96%, 58.01%, 63.13%, 55.62%, and 52.15% respectively. The mean concentration of most of the heavy metals in sediments does not exceed the recommended reference values. Zinc and lead concentrations were greater than background level and Interim Sediment Quality Guidelines but lower than Probable Effect Level. Therefore a regular program for monitoring the distribution of heavy metals in water, sediments and biota should be imposed on sewage fed fish ponds of the Kolkata wetland ecosystem.  相似文献   

16.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

17.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

18.
Sediments are the ultimate sump for heavy metal pollutants. The main purpose was to investigate the ecological and health risk assessment of heavy metals in the sediments of Wadi Al-Aqiq water reservoir. The metals detected were arranged in decreasing order Fe > Mn > Cr > Cu > Zn > Ni > Co > Pb. Pearson correlation analysis indicated strong positive association and significant linear relation between various pairs of metals. Different evaluation indices used indicated that source of contamination from lithogenic sources and sediments can be classified as low polluted quality. A comparison of the concentrations of metals with International Sediment Quality Guidelines criteria showed that only Cu and Ni concentrations above the ERL and below the ERM guideline values suggest possible adverse effects. On comparing with US Environmental Protection Agency prepared sediment quality criteria it indicated that Pb and Zn have concentrations below the non-polluted criteria, Fe, Mn, and Ni lies in the range of moderately polluted criteria, and Co and Cu are within the heavily polluted criteria. Non-carcinogenic risk quantification indicated health concern from ingestion route and no health effects for dermal exposure. On considering additive effect, the dermal exposure may cause health harm. The carcinogenic risk assessment for lead and chromium showed an acceptable risk to human health.  相似文献   

19.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价.结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全.个别产区常山...  相似文献   

20.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号