首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant insight into the mechanisms that contribute to dopaminergic neurodegeneration in Parkinson disease has been gained from the analysis of genes linked to rare heritable forms of parkinsonism such as PINK1 and parkin, loss-of-function mutations of which cause autosomal recessive parkinsonism. PINK1 encodes a mitochondrially targeted Ser/Thr kinase and parkin encodes a ubiquitin-protein ligase. Functional studies of PINK1 and Parkin in animal and cellular model systems have shown that both proteins play important roles in maintaining mitochondrial integrity. Genetic studies of PINK1 and Parkin orthologs in flies have shown that PINK1 acts upstream from Parkin in a common pathway that appears to regulate mitochondrial morphology. Mitochondrial morphology is regulated by mitochondrial fission and fusion-promoting proteins, and is important in a variety of contexts, including mitochondrial trafficking and mitochondrial quality control. In particular, mitochondrial fission appears to promote the segregation of terminally dysfunctional mitochondria for degradation in the lysosome through a process termed mitophagy. Recent work has shown that Parkin promotes the degradation of dysfunctional mitochondria in vertebrate cell culture. Here we postulate a model whereby the PINK1/Parkin pathway regulates mitochondrial dynamics in an effort to promote the turnover of damaged mitochondria.  相似文献   

2.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.  相似文献   

3.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

4.
Upon mitochondrial depolarization, Parkin, a Parkinson disease-related E3 ubiquitin ligase, translocates from the cytosol to mitochondria and promotes their degradation by mitophagy, a selective type of autophagy. Here, we report that in addition to mitophagy, Parkin mediates proteasome-dependent degradation of outer membrane proteins such as Tom20, Tom40, Tom70, and Omp25 of depolarized mitochondria. By contrast, degradation of the inner membrane and matrix proteins largely depends on mitophagy. Furthermore, Parkin induces rupture of the outer membrane of depolarized mitochondria, which also depends on proteasomal activity. Upon induction of mitochondrial depolarization, proteasomes are recruited to mitochondria in the perinuclear region. Neither proteasome-dependent degradation of outer membrane proteins nor outer membrane rupture is required for mitophagy. These results suggest that Parkin regulates degradation of outer and inner mitochondrial membrane proteins differently through proteasome- and mitophagy-dependent pathways.  相似文献   

5.
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson’s disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.  相似文献   

6.
《Autophagy》2013,9(5):660-662
Much evidence links mitochondrial dysfunction to the death of neurons in Parkinson disease (PD), and is particularly emphasized by our growing understanding of the function of genes linked to recessively inherited PD such as PINK1, parkin and DJ-1. Recent work has revealed an exciting link between the PINK1-Parkin pathway and the autophagic turnover of dysfunctional mitochondrial (mitophagy). We have recently shown that mitofusin is ubiquitinated by Parkin when it is recruited to dysfunctional mitochondria. Recent work also shows that regulated fission and fusion events help segregate dysfunctional mitochondria prior to mitophagy. Here we hypothesize how Parkin-mediated ubiquitination of Mfn may play a role in this mechanism.  相似文献   

7.
Mitochondria sustain damage with aging, and the resulting mitochondrial dysfunction has been implicated in a number of diseases including Parkinson disease. We recently demonstrated that the E3 ubiquitin ligase Parkin, which is linked to recessive forms of parkinsonism, causes a dramatic increase in mitophagy and a change in mitochondrial distribution, following its translocation from the cytosol to mitochondria. Investigating how Parkin induces these changes may offer insight into the mechanisms that lead to the sequestration and elimination of damaged mitochondria. We report that following Parkin’s translocation from the cytosol to mitochondria, Parkin (but not a pathogenic mutant) promotes the K63-linked polyubiquitination of mitochondrial substrate(s) and recruits the ubiquitin- and LC3-binding protein, p62/SQSTM1, to mitochondria. After its recruitment, p62/SQSTM1 mediates the aggregation of dysfunctional mitochondria through polymerization via its PB1 domain, in a manner analogous to its aggregation of polyubiquitinated proteins. Surprisingly and in contrast to what has been recently reported for ubiquitin-induced pexophagy and xenophagy, p62 appears to be dispensable for mitophagy. Similarly, mitochondrial-anchored ubiquitin is sufficient to recruit p62 and promote mitochondrial clustering, but does not promote mitophagy. Although VDAC1 (but not VDAC2) is ubiquitinated following mitochondrial depolarization, we find VDAC1 cannot fully account for the mitochondrial K63-linked ubiquitin immunoreactivity observed following depolarization, as it is also observed in VDAC1/3-/- mouse embryonic fibroblasts. Additionally, we find VDAC1 and VDAC3 are dispensable for the recruitment of p62, mitochondrial clustering and mitophagy. These results demonstrate that mitochondria are aggregated by p62, following its recruitment by Parkin in a VDAC1-independent manner. They also suggest that proteins other than p62 are likely required for mitophagy downstream of Parkin substrates other than VDAC1.  相似文献   

8.
《Autophagy》2013,9(8):1090-1106
Mitochondria sustain damage with aging, and the resulting mitochondrial dysfunction has been implicated in a number of diseases including Parkinson disease. We recently demonstrated that the E3 ubiquitin ligase Parkin, which is linked to recessive forms of parkinsonism, causes a dramatic increase in mitophagy and a change in mitochondrial distribution, following its translocation from the cytosol to mitochondria. Investigating how Parkin induces these changes may offer insight into the mechanisms that lead to the sequestration and elimination of damaged mitochondria. We report that following Parkin’s translocation from the cytosol to mitochondria, Parkin (but not a pathogenic mutant) promotes the K63-linked polyubiquitination of mitochondrial substrate(s) and recruits the ubiquitin- and LC3-binding protein, p62/SQSTM1, to mitochondria. After its recruitment, p62/SQSTM1 mediates the aggregation of dysfunctional mitochondria through polymerization via its PB1 domain, in a manner analogous to its aggregation of polyubiquitinated proteins. Surprisingly and in contrast to what has been recently reported for ubiquitin-induced pexophagy and xenophagy, p62 appears to be dispensable for mitophagy. Similarly, mitochondrial-anchored ubiquitin is sufficient to recruit p62 and promote mitochondrial clustering, but does not promote mitophagy. Although VDAC1 (but not VDAC2) is ubiquitinated following mitochondrial depolarization, we find VDAC1 cannot fully account for the mitochondrial K63-linked ubiquitin immunoreactivity observed following depolarization, as it is also observed in VDAC1/3-/- mouse embryonic fibroblasts. Additionally, we find VDAC1 and VDAC3 are dispensable for the recruitment of p62, mitochondrial clustering and mitophagy. These results demonstrate that mitochondria are aggregated by p62, following its recruitment by Parkin in a VDAC1-independent manner. They also suggest that proteins other than p62 are likely required for mitophagy downstream of Parkin substrates other than VDAC1.  相似文献   

9.
Ambra1     
《Autophagy》2013,9(12):1555-1556
Mutations in the gene for the E3 ubiquitin ligase Parkin are the most prevalent cause of autosomal recessive Parkinson disease (PD), an incurable neurodegenerative disorder. Parkin surveys mitochondrial quality by translocating to depolarized mitochondria and inducing their selective macroautophagic removal (mitophagy). We recently reported that Parkin interacts with Ambra1 (activating molecule in Beclin 1-regulated autophagy), a protein that promotes autophagy in the vertebrate central nervous system. We discovered that prolonged mitochondrial depolarization strongly increases the interaction of Parkin with Ambra1. Ambra1 is recruited in a Parkin-dependent manner to perinuclear clusters of depolarized mitochondria, activates the class III phosphatidylinositol 3-kinase (PtdIns3K) complex around these mitochondria and contributes to their selective autophagic clearance. Here, we discuss these findings and suggest a model where translocated Parkin efficiently triggers mitophagy through combined recruitment of Ambra1 and ubiquitination of outer mitochondrial membrane proteins.  相似文献   

10.
Mutations in the gene for the E3 ubiquitin ligase Parkin are the most prevalent cause of autosomal recessive Parkinson disease (PD), an incurable neurodegenerative disorder. Parkin surveys mitochondrial quality by translocating to depolarized mitochondria and inducing their selective macroautophagic removal (mitophagy). We recently reported that Parkin interacts with Ambra1 (activating molecule in Beclin 1-regulated autophagy), a protein that promotes autophagy in the vertebrate central nervous system. We discovered that prolonged mitochondrial depolarization strongly increases the interaction of Parkin with Ambra1. Ambra1 is recruited in a Parkin-dependent manner to perinuclear clusters of depolarized mitochondria, activates the class III phosphatidylinositol 3-kinase (PtdIns3K) complex around these mitochondria and contributes to their selective autophagic clearance. Here, we discuss these findings and suggest a model where translocated Parkin efficiently triggers mitophagy through combined recruitment of Ambra1 and ubiquitination of outer mitochondrial membrane proteins.  相似文献   

11.
Alessandro Luciani 《Autophagy》2020,16(6):1159-1161
ABSTRACT

Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of metabolism due to the deficiency of mitochondrial MMUT (methylmalonyl-CoA mutase) – an enzyme that mediates the cellular breakdown of certain amino acids and lipids. The loss of MMUT leads to the accumulation of toxic organic acids causing severe organ dysfunctions and life-threatening complications. The mechanisms linking MMUT deficiency, mitochondrial alterations and cell toxicity remain uncharacterized. Using cell and animal-based models, we recently unveiled that MMUT deficiency impedes the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, thereby halting their delivery and subsequent degradation by macroautophagy/autophagy-lysosome systems. In turn, this defective mitophagy process instigates the accumulation of dysfunctional mitochondria that spark epithelial distress and tissue damage. Correction of PINK1-directed mitophagy defects or mitochondrial dysfunctions rescues epithelial distress in MMA cells and alleviates disease-relevant phenotypes in mmut?deficient zebrafish. Our findings suggest a link between primary MMUT deficiency and diseased mitochondria, mitophagy dysfunction and cell distress, offering potential therapeutic perspectives for MMA and other metabolic diseases.  相似文献   

12.
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.  相似文献   

13.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   

14.
《Autophagy》2013,9(2):315-316
Mutations in PTEN-induced putative kinase 1 (PINK1) and PARK2/Parkin cause autosomal recessive forms of Parkinson disease. In mammalian cells, cytosolic Parkin is selectively recruited to depolarized mitochondria, followed by a stimulation of mitochondrial autophagy. We show that Parkin translocation to mitochondria is mediated by PINK1, even in cells with normal mitochondrial membrane potential (ΔΨm). Once at the mitochondria, Parkin is in close proximity to PINK1, but Parkin does not catalyze PINK1 ubiquitination nor does PINK1 phosphorylate Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into large mitochondrial perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin and PINK1 modulate mitochondrial trafficking to the perinuclear region, a subcellular area associated with autophagy. Mutations in either Parkin or PINK1 impair this process and, consequently, mitochondrial turnover may be altered, inducing accumulation of defective mitochondria and, ultimately, causing neurodegeneration in Parkinson disease.  相似文献   

15.
PINK1 and Parkin mutations cause recessive Parkinson's disease (PD). In Drosophila and SH-SY5Y cells, Parkin is recruited by PINK1 to damaged mitochondria, where it ubiquitinates Mitofusins and consequently promotes mitochondrial fission and mitophagy.Here, we investigated the impact of mutations in endogenous PINK1 and Parkin on the ubiquitination of mitochondrial fusion and fission factors and the mitochondrial network structure. Treating control fibroblasts with mitochondrial membrane potential (Δψ) inhibitors or H(2)O(2) resulted in ubiquitination of Mfn1/2 but not of OPA1 or Fis1. Ubiquitination of Mitofusins through the PINK1/Parkin pathway was observed within 1 h of treatment. Upon combined inhibition of Δψ and the ubiquitin proteasome system (UPS), no ubiquitination of Mitofusins was detected. Regarding morphological changes, we observed a trend towards increased mitochondrial branching in PD patient cells upon mitochondrial stress.For the first time in PD patient-derived cells, we demonstrate that mutations in PINK1 and Parkin impair ubiquitination of Mitofusins. In the presence of UPS inhibitors, ubiquitinated Mitofusin is deubiquitinated by the UPS but not degraded, suggesting that the UPS is involved in Mitofusin degradation.  相似文献   

16.
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin''s ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved.  相似文献   

17.
Mutations in the parkin gene are the most common cause of autosomal recessive Parkinson’s disease (PD). As an E3-ubiquitin ligase, Parkin is associated with mitochondrial dynamics and mitophagy. Mortalin, a molecular chaperone, is located primarily in mitochondria, where it functions to maintain mitochondrial homeostasis and antagonize oxidative stress injury. A reduced expression level of mortalin has been observed in the affected brain regions of PD patients. Mortalin also interacts with a variety of PD-related proteins and plays an indispensible role in helping native protein refolding and importing proteins into the mitochondrial matrix. Thus, the main aims of the present study were to investigate mitochondrial dysfunction induced by knockdown of mortalin and to test whether Parkin overexpression could rescue this effect. We found that lentivirus-mediated knockdown of mortalin in HeLa cells resulted in a collapse of mitochondrial membrane potential, an abnormal accumulation of reactive oxygen species and apparent alterations in mitochondrial morphology under H2O2-induced stress conditions. Remarkably, Parkin overexpression rescued these mitochondrial abnormalities. In HeLa cells expressing Parkin, co-immunoprecipitation of endogenous mortalin and wild-type Parkin was detected when they were treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In conclusion, we indicate that the relatively decreased mortalin expression level and its impaired interaction with Parkin could affect its roles in mitochondrial function.  相似文献   

18.
Mutations in the Park2 gene, encoding the E3 ubiquitin‐ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin‐mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin‐mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin‐mediated mitophagy. USP8 preferentially removes non‐canonical K6‐linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8‐mediated deubiquitination of K6‐linked ubiquitin conjugates from parkin in mitochondrial quality control.  相似文献   

19.
The mitochondrial chaperone mortalin was implicated in Parkinson''s disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes.  相似文献   

20.
Chan NC  Chan DC 《Autophagy》2011,7(7):771-772
Parkin is a ubiquitin E3 ligase that is implicated in familial Parkinson disease (PD). Previous studies have established its role in mitophagy, a pathway whereby dysfunctional mitochondria are targeted for autophagic degradation. We recently reported that a major function of Parkin in dysfunctional mitochondria is to activate the ubiquitin-proteasome system (UPS) for proteolysis of multiple outer membrane proteins, and that such activation of the UPS is a critical step in Parkin-mediated mitophagy. Here, we discuss the possible roles of the UPS in mitophagy and the pathogenesis of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号