首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liang Ge  Randy Schekman 《Autophagy》2014,10(1):170-172
A long-standing quest in the autophagy field is to define the membrane origin of the autophagosome. We have established a cell-free assay based on LC3 lipidation that recapitulates multiple regulatory hallmarks of early autophagosome biogenesis. Using a systematic membrane fractionation approach, we have identified the ER-Golgi intermediate compartment (ERGIC) as the most efficient membrane substrate for LC3 lipidation. Further studies indicate that the ERGIC plays an essential role to trigger LC3 lipidation and autophagosome biogenesis by recruiting the key early autophagic factor ATG14.  相似文献   

2.
Liang Ge  Livia Wilz  Randy Schekman 《Autophagy》2015,11(12):2372-2374
Autophagosome biogenesis requires efficient mobilization and delivery of membranes from intracellular sources. How these membranes are mobilized remains poorly understood. Our recent work reported an autophagic signal-induced membrane mobilization event from the ER-Golgi intermediate compartment (ERGIC) to generate an early autophagosomal membrane precursor. We found that starvation activates the autophagic phosphatidylinositol 3-kinase, which promotes a relocation of COPII proteins from the ER-exit sites to the ERGIC. The relocation of COPII generates ERGIC-derived COPII vesicles as a membrane template for LC3 lipidation, a key step for autophagosome biogenesis.  相似文献   

3.
Autophagosomes are double‐membrane vesicles generated during autophagy. Biogenesis of the autophagosome requires membrane acquisition from intracellular compartments, the mechanisms of which are unclear. We previously found that a relocation of COPII machinery to the ER–Golgi intermediate compartment (ERGIC) generates ERGIC‐derived COPII vesicles which serve as a membrane precursor for the lipidation of LC3, a key membrane component of the autophagosome. Here we employed super‐resolution microscopy to show that starvation induces the enlargement of ER‐exit sites (ERES) positive for the COPII activator, SEC12, and the remodeled ERES patches along the ERGIC. A SEC12 binding protein, CTAGE5, is required for the enlargement of ERES, SEC12 relocation to the ERGIC, and modulates autophagosome biogenesis. Moreover, FIP200, a subunit of the ULK protein kinase complex, facilitates the starvation‐induced enlargement of ERES independent of the other subunits of this complex and associates via its C‐terminal domain with SEC12. Our data indicate a pathway wherein FIP200 and CTAGE5 facilitate starvation‐induced remodeling of the ERES, a prerequisite for the production of COPII vesicles budded from the ERGIC that contribute to autophagosome formation.  相似文献   

4.
How does the phagophore form? Which membrane acts as a platform for its biogenesis? Over the years, extensive use of microscopy techniques have led to the controversial identification of multiple potential membranes as precursors for phagophore nucleation and/or for the supply of lipids to the expanding compartment. Nevertheless, none of these studies has established a direct functional link between membrane sources and autophagosome biogenesis. Addressing this point, in a recent study highlighted by a punctum in this issue, Ge and coworkers developed an in vitro approach to determine the identity of the membranes responsible for the lipidation of LC3, thus identifying the ER-Golgi intermediate compartment (ERGIC) as a potential key determinant of phagophore biogenesis.  相似文献   

5.
Two ubiquitin-like molecules, Atg12 and LC3/Atg8, are involved in autophagosome biogenesis. Atg12 is conjugated to Atg5 and forms an ~800-kDa protein complex with Atg16L (referred to as Atg16L complex). LC3/Atg8 is conjugated to phosphatidylethanolamine and is associated with autophagosome formation, perhaps by enabling membrane elongation. Although the Atg16L complex is required for efficient LC3 lipidation, its role is unknown. Here, we show that overexpression of Atg12 or Atg16L inhibits autophagosome formation. Mechanistically, the site of LC3 lipidation is determined by the membrane localization of the Atg16L complex as well as the interaction of Atg12 with Atg3, the E2 enzyme for the LC3 lipidation process. Forced localization of Atg16L to the plasma membrane enabled ectopic LC3 lipidation at that site. We propose that the Atg16L complex is a new type of E3-like enzyme that functions as a scaffold for LC3 lipidation by dynamically localizing to the putative source membranes for autophagosome formation.  相似文献   

6.
Min Zhang  Yu Wang 《Autophagy》2018,14(5):918-920
Autophagosomal membrane sources generate autophagic membrane precursors, which later assemble into the double-membrane autophagosome. The key events happening on the membrane sources during autophagic membrane generation remain poorly characterized. Our previous work found the ER-Golgi intermediate compartment (ERGIC) as a membrane source for the phagophore, the precursor to the autophagosome. A relocation of the COPII machinery from the ER-exit sites (ERES) to the ERGIC generates vesicles for LC3 lipidation. In recent work, we made a further step by showing that a starvation-induced remodeling of ERES facilitates the relocation of COPII to the ERGIC and the generation of the autophagic membrane.  相似文献   

7.
《Autophagy》2013,9(12):1434-1447
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.  相似文献   

8.
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.  相似文献   

9.
Noda T  Fujita N  Yoshimori T 《Autophagy》2008,4(4):540-541
Atg12 and Atg8/LC3 are two ubiquitin-like proteins involved in autophagosome formation. They show several similar characteristics just like brothers evolved from the same ancestor, however, their functional relationship has been obscure. We recently reported that a super protein complex, the Atg16L complex, which consists of multiple Atg12-Atg5 conjugates and the associating protein Atg16L, has an E3-like role in the LC3 lipidation reaction(1). The activated intermediate, LC3-Atg3 (E2) is recruited to the site where the lipidation takes place by virtue of the Atg16L complex. Thus, these two closely resembling systems are connected also in terms of their functions. This finding will provide further important clues as to the origin of the autophagosome membrane, and how the process is regulated by starvation and PtdIns3P signals.  相似文献   

10.
The membrane source for autophagosome biogenesis is an unsolved mystery in the study of autophagy. ATG16L1 forms a complex with ATG12–ATG5 (the ATG16L1 complex). The ATG16L1 complex is recruited to autophagic membranes to convert MAP1LC3B-I to MAP1LC3B-II. The ATG16L1 complex dissociates from the phagophore before autophagosome membrane closure. Thus, ATG16L1 can be used as an early event marker for the study of autophagosome biogenesis. We found that among 3 proteins in the ATG16L1 complex, only ATG16L1 formed puncta-like structures when transiently overexpressed. ATG16L1+ puncta formed by transient expression could represent autophagic membrane structures. We thoroughly characterized the transiently expressed ATG16L1 in several mammalian cell lines. We found that transient expression of ATG16L1 not only inhibited autophagosome biogenesis, but also aberrantly targeted RAB11-positive recycling endosomes, resulting in recycling endosome aggregates. We conclude that transient expression of ATG16L1 is not a physiological model for the study of autophagy. Caution is warranted when reviewing findings derived from a transient expression model of ATG16L1.  相似文献   

11.
《Autophagy》2013,9(10):1639-1641
The role of membrane remodeling and phosphoinositide-binding proteins in autophagy remains elusive. PX domain proteins bind phosphoinositides and participate in membrane remodeling and trafficking events and we therefore hypothesized that one or several PX domain proteins are involved in autophagy. Indeed, the PX-BAR protein SNX18 was identified as a positive regulator of autophagosome formation using an image-based siRNA screen. We show that SNX18 interacts with ATG16L1 and LC3, and functions downstream of ATG14 and the class III PtdIns3K complex in autophagosome formation. SNX18 facilitates recruitment of ATG16L1 to perinuclear recycling endosomes, and its overexpression leads to tubulation of ATG16L1- and LC3-positive membranes. We propose that SNX18 promotes LC3 lipidation and tubulation of recycling endosomes to provide membrane for phagophore expansion.  相似文献   

12.
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.  相似文献   

13.
Autophagy, a critical process for bulk degradation of proteins and organelles, requires conjugation of Atg8 proteins to phosphatidylethanolamine on the autophagic membrane. At least eight different Atg8 orthologs belonging to two subfamilies (LC3 and GATE‐16/GABARAP) occur in mammalian cells, but their individual roles and modes of action are largely unknown. In this study, we dissect the activity of each subfamily and show that both are indispensable for the autophagic process in mammalian cells. We further show that both subfamilies act differently at early stages of autophagosome biogenesis. Accordingly, our results indicate that LC3s are involved in elongation of the phagophore membrane whereas the GABARAP/GATE‐16 subfamily is essential for a later stage in autophagosome maturation.  相似文献   

14.
Autophagy is an important cellular degradation pathway present in all eukaryotic cells. Via this pathway, portions of the cytoplasm and/or organelles are sequestered in double‐membrane structures called autophagosomes. In spite of the significant advance achieved in autophagy, the long‐standing question about the source of the autophagic membrane remains unsolved. We have investigated the role of the secretory pathway in autophagosome biogenesis. Sar1 and Rab1b are monomeric GTPases that control traffic from the endoplasmic reticulum (ER) to the Golgi. We present evidence indicating that the activity of both proteins is required for autophagosome formation. Overexpression of dominant‐negative mutants and the use of siRNAs impaired autophagosome generation as determined by LC3 puncta formation and light chain 3 (LC3)‐II processing. In addition, our results indicate that the autophagic and secretory pathways intersect at a level preceding the brefeldin A blockage, suggesting that the transport from the cis/medial Golgi is not necessary for autophagosome biogenesis. Our present results highlight the role of transport from the ER in the initial events of the autophagic vacuole development.  相似文献   

15.
The membrane remodeling events required for autophagosome biogenesis are still poorly understood. Because PX domain proteins mediate membrane remodeling and trafficking, we conducted an imaging-based siRNA screen for autophagosome formation targeting human PX proteins. The PX-BAR protein SNX18 was identified as a positive regulator of autophagosome formation, and its Drosophila melanogaster homologue SH3PX1 was found to be required for efficient autophagosome formation in the larval fat body. We show that SNX18 is required for recruitment of Atg16L1-positive recycling endosomes to a perinuclear area and for delivery of Atg16L1- and LC3-positive membranes to autophagosome precursors. We identify a direct interaction of SNX18 with LC3 and show that the pro-autophagic activity of SNX18 depends on its membrane binding and tubulation capacity. We also show that the function of SNX18 in membrane tubulation and autophagy is negatively regulated by phosphorylation of S233. We conclude that SNX18 promotes autophagosome formation by virtue of its ability to remodel membranes and provide membrane to forming autophagosomes.  相似文献   

16.
We recently described in C. elegans embryos, the acquisition of specialized functions for orthologs of yeast Atg8 (e.g., mammalian MAP1LC3/LC3) in allophagy, a selective and developmentally regulated autophagic process. During the formation of double-membrane autophagosomes, the ubiquitin-like Atg8/LC3 proteins are recruited to the membrane through a lipidation process. While at least 6 orthologs and paralogs are present in mammals, C. elegans only possesses 2 orthologs, LGG-1 and LGG-2, corresponding to the GABARAP-GABARAPL2/GATE-16 and the MAP1LC3 families, respectively. During allophagy, LGG-1 acts upstream of LGG-2 and is essential for autophagosome biogenesis, whereas LGG-2 facilitates their maturation. We demonstrated that LGG-2 directly interacts with the HOPS complex subunit VPS-39, and mediates the tethering between autophagosomes and lysosomes, which also requires RAB-7. In the present addendum, we compared the localization of autophagosomes, endosomes, amphisomes, and lysosomes in vps-39, rab-7, and lgg-2 depleted embryos. Our results suggest that lysosomes interact with autophagosomes or endosomes through a similar mechanism. We also performed a functional complementation of an lgg-1 null mutant with human GABARAP, its closer homolog, and showed that it localizes to autophagosomes and can rescue LGG-1 functions in the early embryo.  相似文献   

17.
The double‐membrane‐bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl‐inositol‐3‐phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER–plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E‐Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E‐Syt‐containing domains during autophagy and that inhibition of E‐Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E‐Syts are essential for autophagy‐associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER–plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.  相似文献   

18.
《Autophagy》2013,9(10):1868-1872
We recently described in C. elegans embryos, the acquisition of specialized functions for orthologs of yeast Atg8 (e.g., mammalian MAP1LC3/LC3) in allophagy, a selective and developmentally regulated autophagic process. During the formation of double-membrane autophagosomes, the ubiquitin-like Atg8/LC3 proteins are recruited to the membrane through a lipidation process. While at least 6 orthologs and paralogs are present in mammals, C. elegans only possesses 2 orthologs, LGG-1 and LGG-2, corresponding to the GABARAP-GABARAPL2/GATE-16 and the MAP1LC3 families, respectively. During allophagy, LGG-1 acts upstream of LGG-2 and is essential for autophagosome biogenesis, whereas LGG-2 facilitates their maturation. We demonstrated that LGG-2 directly interacts with the HOPS complex subunit VPS-39, and mediates the tethering between autophagosomes and lysosomes, which also requires RAB-7. In the present addendum, we compared the localization of autophagosomes, endosomes, amphisomes, and lysosomes in vps-39, rab-7, and lgg-2 depleted embryos. Our results suggest that lysosomes interact with autophagosomes or endosomes through a similar mechanism. We also performed a functional complementation of an lgg-1 null mutant with human GABARAP, its closer homolog, and showed that it localizes to autophagosomes and can rescue LGG-1 functions in the early embryo.  相似文献   

19.
Phosphatidylinositol 4‐phophate (PtdIns(4)P) is an essential signaling molecule in the Golgi body, endosomal system, and plasma membrane and functions in the regulation of membrane trafficking, cytoskeletal organization, lipid metabolism and signal transduction pathways, all mediated by direct interaction with PtdIns(4)P‐binding proteins. PtdIns(4)P was recently reported to have functional roles in autophagosome biogenesis. LC3 and GABARAP subfamilies and a small GTP‐binding protein, Rab7, are localized on autophagosomal membranes and participate at each stage of autophagosome formation and maturation. To better understand autophagosome biogenesis, it is essential to determine the localization of PtdIns(4)P and to examine its relationship with LC3 and GABARAP subfamilies and Rab7. To analyze PtdIns(4)P distribution, we used an electron microscopy technique that labels PtdIns(4)P on the freeze‐fracture replica of intracellular biological membranes, which minimizes the possibility of artificial perturbation because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P is localized on the cytoplasmic, but not the luminal (exoplasmic), leaflet of the inner and outer membranes of autophagosomes. Double labeling revealed that PtdIns(4)P mostly colocalizes with Rab7, but not with LC3B, GABARAP, GABARAPL1 and GABARAPL2. Rab7 plays essential roles in autophagosome maturation and in autophagosome‐lysosome fusion events. We suggest that PtdIns(4)P is localized to the cytoplasmic leaflet of the autophagosome at later stages, which may illuminate the importance of PtdIns(4)P at the later stages of autophagosome formation.   相似文献   

20.
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号