首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EDEM1 is a crucial regulator of endoplasmic reticulum (ER)-associated degradation (ERAD) that extracts non-native glycopolypeptides from the calnexin chaperone system. Under normal growth conditions, the intralumenal level of EDEM1 must be low to prevent premature interruption of ongoing folding programs. We report that in unstressed cells, EDEM1 is segregated from the bulk ER into LC3-I-coated vesicles and is rapidly degraded. The rapid turnover of EDEM1 is regulated by a novel mechanism that shows similarities but is clearly distinct from macroautophagy. Cells with defective EDEM1 turnover contain unphysiologically high levels of EDEM1, show enhanced ERAD activity and are characterized by impaired capacity to efficiently complete maturation of model glycopolypeptides. We define as ERAD tuning the mechanisms operating in the mammalian ER at steady state to offer kinetic advantage to folding over disposal of unstructured nascent chains by selective and rapid degradation of ERAD regulators.  相似文献   

2.
3.
Several regulators of endoplasmic reticulum (ER)-associated degradation (ERAD) have a shorter half-life compared to conventional ER chaperones. At steady state, they are selectively removed from the ER by poorly defined events collectively referred to as ERAD tuning. Here we identify the complex comprising the type-I transmembrane protein SEL1L and the cytosolic protein LC3-I as an ERAD tuning receptor regulating the COPII-independent, vesicle-mediated removal of the lumenal ERAD regulators EDEM1 and OS-9 from the ER. Expression of?folding-defective polypeptides enhances the lumenal content of EDEM1 and OS-9 by inhibiting their SEL1L:LC3-I-mediated segregation. This raises ERAD activity in the absence of UPR-induction. The mouse hepatitis virus (MHV) subverts ERAD tuning for replication. Consistently, SEL1L or LC3 silencing impair the MHV life cycle. Collectively, our data provide new molecular information about the ERAD tuning mechanisms that regulate ERAD in mammalian cells at the post translational level and how these mechanisms are hijacked by a pathogen.  相似文献   

4.
The endoplasmic reticulum‐associated degradation (ERAD) machinery selects native and misfolded polypeptides for dislocation across the ER membrane and proteasomal degradation. Regulated degradation of native proteins is an important aspect of cell physiology. For example, it contributes to the control of lipid biosynthesis, calcium homeostasis and ERAD capacity by setting the turnover rate of crucial regulators of these pathways. In contrast, degradation of native proteins has pathologic relevance when caused by viral or bacterial infections, or when it occurs as a consequence of dysregulated ERAD activity. The efficient disposal of misfolded proteins prevents toxic depositions and persistent sequestration of molecular chaperones that could induce cellular stress and perturb maintenance of cellular proteostasis. In the first section of this review, we survey the available literature on mechanisms of selection of native and non‐native proteins for degradation from the ER and on how pathogens hijack them. In the second section, we highlight the mechanisms of ERAD activity adaptation to changes in the ER environment with a particular emphasis on the post‐translational regulatory mechanisms collectively defined as ERAD tuning.   相似文献   

5.
Proteins entering the endoplasmic reticulum (ER) have to acquire an export-competent structure before they are delivered to their final destination. This folding process is monitored by an ER protein quality control system. Folding-incompetent conformers are eliminated via a mechanism called ER-associated protein degradation (ERAD). Genetic studies in the yeast Saccharomyces cerevisiae have revealed that carbohydrate modification plays a crucial role in these processes. Here we show that a previously isolated der mutant (der7-1) is defective in ERAD. We identify DER7 as the gene encoding N-glycan-processing alpha-glucosidase I (EC 3.2.1.106) of the ER and demonstrate that its inactivity, due to a substitution of the conserved glycine residue at position 725 by arginine (G725R) in the der7-1 mutant, leads to ER-stress.  相似文献   

6.
About 40% of the eukaryotic cell’s proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes.  相似文献   

7.
Proteins imported into the endoplasmic reticulum (ER) are scanned for their folding status. Those that do not reach their native conformation are degraded via the ubiquitin‐proteasome system. This process is called ER‐associated degradation (ERAD). Der1 is known to be one of the components required for efficient degradation of soluble ERAD substrates like CPY* (mutated carboxypeptidase yscY). A homologue of Der1 exists, named Dfm1. No function of Dfm1 has been discovered, although a C‐terminally hemagglutinin (HA)3‐tagged Dfm1 protein has been shown to interact with the ERAD machinery. In our studies, we found Dfm1‐HA3 to be an ERAD substrate and therefore not suitable for functional studies of Dfm1 in ERAD. We found cellular, non‐tagged Dfm1 to be a stable protein. We identified Dfm1 to be part of complexes which contain the ERAD‐L ligase Hrd1/Der3 and Der1 as well as the ERAD‐C ligase Doa10. In addition, ERAD of Ste6*‐HA3 was strongly dependent on Dfm1. Interestingly, Dfm1 forms a complex with the AAA‐ATPase Cdc48 in a strain lacking the Cdc48 membrane‐recruiting component Ubx2. This complex does not contain the ubiquitin ligases Hrd1/Der3 and Doa10. The existence of such a complex might point to an additional function of Dfm1 independent from ERAD.  相似文献   

8.
Most proteins in the secretory pathway are translated, folded, and subjected to quality control at the endoplasmic reticulum (ER). These processes must be flexible enough to process diverse protein conformations, yet specific enough to recognize when a protein should be degraded. Molecular chaperones are responsible for this decision making process. ER associated chaperones assist in polypeptide translocation, protein folding, and ER associated degradation (ERAD). Nevertheless, we are only beginning to understand how chaperones function, how they are recruited to specific substrates and assist in folding/degradation, and how unique chaperone classes make quality control "decisions".  相似文献   

9.
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER‐associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate‐limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.  相似文献   

10.
ERAD is an important process of protein quality control that eliminates misfolded or unassembled proteins from ER. Before undergoing proteasome degradation, the misfolded proteins are dislocated from ER membrane into cytosol, which requires the AAA ATPase p97/VCP and its cofactor, the NPL4-UFD1 dimer. Here, we performed a CRISPR-based screen and identify many candidates for ERAD regulation. We further confirmed four proteins, FBOX2, TRIM6, UFL1 and WDR20, are novel regulators for ERAD. Then the molecular mechanism for WDR20 in ERAD is further characterized. Depletion of WDR20 inhibits the degradation of TCRα, a typical ERAD substrate, while WDR20 overexpression reduces TCRα protein level. WDR20 associates with TCRα and central regulators of the ERAD system, p97, GP78 and HRD1. A portion of WDR20 localizes to the ER-containing microsomal membrane. WDR20 expression increases TCRα ubiquitination, and HRD1 E3 ligase is essential for the process. WDR20 seems to serve as an adaptor protein to mediate the interaction between p97 and TCRα. Our study provides novel candidates and reveals an unexpected role of WDR20 in ERAD regulation.  相似文献   

11.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is the process by which aberrant proteins in the ER lumen are exported back to the cytosol and degraded by the proteasome. Although ER molecular chaperones are required for ERAD, their specific role(s) in this process have been ill defined. To understand how one group of interacting lumenal chaperones facilitates ERAD, the fates of pro-alpha-factor and a mutant form of carboxypeptidase Y were examined both in vivo and in vitro. We found that these ERAD substrates are stabilized and aggregate in the ER at elevated temperatures when BiP, the lumenal Hsp70 molecular chaperone, is mutated, or when the genes encoding the J domain-containing proteins Jem1p and Scj1p are deleted. In contrast, deletion of JEM1 and SCJ1 had little effect on the ERAD of a membrane protein. These results suggest that one role of the BiP, Jem1p, and Scj1p chaperones is to maintain lumenal ERAD substrates in a retrotranslocation-competent state.  相似文献   

12.
Protein quality control in the endoplasmic reticulum (ER) is an elaborate process conserved from yeast to mammals, ensuring that only newly synthesized proteins with correct conformations in the ER are sorted further into the secretory pathway. It is well known that high-mannose type N-glycans are involved in protein-folding events. In the quality control process, proteins that fail to achieve proper folding or proper assembly are degraded in a process known as ER-associated degradation (ERAD). The ERAD pathway comprises multiple steps including substrate recognition and targeting to the retro-translocation machinery, retrotranslocation from the ER into the cytosol, and proteasomal degradation through ubiquitination. Recent studies have documented the important roles of sugar-recognition (lectin-type) molecules for trimmed high-mannose type N-glycans and glycosidases in the ERAD pathways in both ER and cytosol. In this review, we discuss a fundamental system that monitors glycoprotein folding in the ER and the unique roles of the sugar-recognizing ubiquitin ligase and peptide:N-glycanase (PNGase) in the cytosolic ERAD pathway.  相似文献   

13.
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.  相似文献   

14.
Braun S  Jentsch S 《EMBO reports》2007,8(12):1176-1182
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a specialized activity of the ubiquitin-proteasome system that is involved in clearing the ER of aberrant proteins and regulating the levels of specific ER-resident proteins. Here we show that the yeast ER-SNARE Ufe1, a syntaxin (Qa-SNARE) involved in ER membrane fusion and retrograde transport from the Golgi to the ER, is prone to degradation by an ERAD-like mechanism. Notably, Ufe1 is protected against degradation through binding to Sly1, a known SNARE regulator of the Sec1-Munc18 (SM) protein family. This mechanism is specific for Ufe1, as the stability of another Sly1 partner, the Golgi Qa-SNARE Sed5, is not influenced by Sly1 interaction. Thus, our findings identify Sly1 as a discriminating regulator of SNARE levels and indicate that Sly1-controlled ERAD might regulate the balance between different Qa-SNARE proteins.  相似文献   

15.
In the endoplasmic reticulum (ER), misfolded proteins are retrotranslocated to the cytosol and degraded by the proteasome in a process known as ER-associated degradation (ERAD). Early in this pathway, a proposed lumenal ER lectin, EDEM, recognizes misfolded glycoproteins in the ER, disengages the nascent molecules from the folding pathway, and facilitates their targeting for disposal. In humans there are a total of three EDEM homologs. The amino acid sequences of these proteins are different from other lectins but are closely related to the Class I mannosidases (family 47 glycosidases). In this study, we characterize one of the EDEM homologs from Homo sapiens, which we have termed EDEM2 (C20orf31). Using recombinantly generated EDEM2, no alpha-1,2 mannosidase activity was observed. In HEK293 cells, recombinant EDEM2 is localized to the ER where it can associate with misfolded alpha1-antitrypsin. Overexpression of EDEM2 accelerates the degradation of misfolded alpha1-antitrypsin, indicating that the protein is involved in ERAD.  相似文献   

16.
To eliminate misfolded proteins that accumulate in the endoplasmic reticulum (ER) the cell mainly relies on ubiquitin-proteasome dependent ER-associated protein degradation (ERAD). Proteolysis of ERAD substrates by the proteasome requires their ubiquitylation and retro-translocation from the ER to the cytoplasm. Here we describe a high molecular mass protein complex associated with the ER membrane, which facilitates ERAD. It contains the ubiquitin domain protein (UDP) HERP, the ubiquitin protein ligase HRD1, as well as the retro-translocation factors p97, Derlin-1 and VIMP. Our data on the structural arrangement of these ERAD proteins suggest that p97 interacts directly with membrane-resident components of the complex including Derlin-1 and HRD1, while HERP binds directly to HRD1. We propose that ubiquitylation, as well as retro-translocation of proteins from the ER are performed by this modular protein complex, which permits the close coordination of these consecutive steps within ERAD.  相似文献   

17.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

18.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

19.
Npl4 is a 67 kDa protein forming a stable heterodimer with Ufd1, which in turn binds the ubiquitous p97/VCP ATPase. According to a widely accepted model, VCPUfd1–Npl4 promotes the retrotranslocation of emerging ER proteins, their ubiquitination by associated ligases, and handling to the 26S proteasome for degradation in a process known as ERAD (ER-associated degradation). Using a series of Npl4 deletion mutants we have revealed that the binding of Ufd1 to Npl4 is mediated by two regions: a conserved stretch of amino acids from 113 to 255 within the zf-Npl4 domain and by the Npl4 homology domain between amino acids 263 and 344. Within the first region, we have identified two discrete subdomains: one involved in Ufd1 binding and one regulating VCP binding. Expression of any one of the mutants failed to induce any changes in the morphology of the ER or Golgi compartments. Moreover, we have observed that overexpression of all the analyzed mutants induced mild ER stress, as evidenced by increased Grp74/BiP expression without associated XBP1 splicing or induction of apoptosis. Surprisingly, we have not observed any accumulation of the typical ERAD substrate αTCR. This favors the model where the Ufd1–Npl4 dimer forms a regulatory gate at the exit from the retrotranslocone, rather than actively promoting retrotranslocation like the p97VCP ATPase.  相似文献   

20.
内质网相关蛋白质降解途径(ERAD),即蛋白质分泌过程中错误折叠或未折叠的蛋白质在内质网中被识别并逆向运输到细胞质经聚泛素化后由蛋白酶体降解的过程.自从发现该途径后对其机制的阐明一直处于不断探索的阶段.近年来,对ERAD底物识别、逆向运输和泛素化新组分的发现以及新技术的应用,使得该途径的具体分子机制更加清晰.本文全面梳理并综述了内质网应激响应、ERAD降解过程与机理的最新进展,并对模式蛋白底物和最新研究方法进行了总结,以期展示该领域的研究概况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号