首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Autophagy》2013,9(6):635-637
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin’s cytotoxicity. However, inhibition of nuclear factor κB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor κB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.

Addendum to:

Evidence That Curcumin Suppresses the Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways

H. Aoki, Y. Takada, S. Kondo, R. Sawaya, B. B. Aggarwal and Y. Kondo

Mol Pharmacol 2007; 72:29-39  相似文献   

3.
《Autophagy》2013,9(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

4.
《Autophagy》2013,9(2):132-134
We recently showed that lithium induces autophagy via inositol monophosphatase (IMPase) inhibition, leading to free inositol depletion and reduced myo-inositol-1,4,5-triphosphate (IP3) levels. This represents a novel way of regulating mammalian autophagy, independent of the mammalian target of rapamycin (mTOR). Induction of autophagy by lithium led to enhanced clearance of autophagy substrates, like mutant huntingtin fragments and mutant a-synucleins, associated with Huntington’s disease (HD) and some autosomal dominant forms of Parkinson’s disease (PD), respectively. Similar effects were observed with a specific IMPase inhibitor and mood-stabilizing drugs that decrease inositol levels. This may represent a new therapeutic strategy for upregulating autophagy in the treatment of neurodegenerative disorders, where the mutant protein is an autophagy substrate. In this Addendum, we review these findings, and some of the speculative possibilities they raise.

Addendum to:

Lithium induces autophagy by inhibiting inositol monophosphatase

S. Sarkar, R.A. Floto, Z. Berger, S. Imarisio, A. Cordenier, M. Pasco, L.J. Cook, D.C. Rubinsztein

J Cell Biol 2005; 170:1101-11.  相似文献   

5.
Fan QW  Weiss WA 《Autophagy》2011,7(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

6.
Malignant glioma is a severe type of brain tumor with a grim prognosis. The occurrence of resistance compromises the efficacy of chemotherapy for glioma. Long noncoding RNA growth arrest-specific 5 (GAS5) has recently become an attractive target for cancer therapy by regulating cell growth, invasion, and migration. Nevertheless, its role in glioma chemoresistance remains elusive. In the current study, the expression of GAS5 was decreased in glioma cell lines, and lower levels of GAS5 were observed in U138 and LN18 glioma cells that had low sensitivity to cisplatin. Functional assay confirmed that knockdown of GAS5 enhanced cell resistance to cisplatin in U87 cells, which had a relatively high expression of GAS5. Conversely, elevation of GAS5 increased cell sensitivity to cisplatin in U138 cells that had a relatively low expression of GAS5. Mechanistically, cisplatin exposure evoked excessive autophagy concomitant with an increase in autophagy-related LC3II expression and a decrease in autophagy substrate p62 expression, which was reversely muted after GAS5 overexpression. In addition, GAS5 restored cisplatin-inhibited mammalian target of rapamycin (mTOR) activation. Preconditioning with mTOR antagonist rapamycin engendered not only mTOR inhibition but also abrogated GAS5-mediated depression in cisplatin-evoked autophagy. Notably, blocking the mTOR pathway also attenuated GAS5-increased sensitivity to cisplatin in U138 cells. Cumulatively, these findings indicate that GAS5 may blunt the resistance of glioma cells to cisplatin by suppressing excessive autophagy through the activation of mTOR signaling, implying a promising therapeutic strategy against chemoresistance in glioma.  相似文献   

7.
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.  相似文献   

8.
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin's cytotoxicity. However, inhibition of nuclear factor kappaB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor kappaB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.  相似文献   

9.
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.  相似文献   

10.
Gliomas are primary brain tumors with poor prognosis that exhibit frequent abnormalities in phosphatidylinositol 3-kinase (PI3 kinase) signaling. We investigated the molecular mechanism of action of the isoform-selective Class I PI3 kinase and mTOR inhibitor PI-103 in human glioma cells. The potent inhibitory effects of PI-103 on the PI3 kinase pathway were quantified. PI-103 and the mTOR inhibitor rapamycin both inhibited RPS6 phosphorylation but there were clear differences in the response of upstream components of the PI3 kinase pathway, such as phosphorylation of Thr308-AKT, that were inhibited by PI-103 but not rapamycin. Gene expression profiling identified altered expression of genes encoding regulators of the cell cycle and cholesterol metabolism, and genes modulated by insulin or IGF1 signaling, rapamycin treatment or nutrient starvation. PI-103 decreased expression of positive regulators of G1/S phase progression and increased expression of the negative cell cycle regulator p27kip1. A reversible PI-103-mediated G1 cell cycle arrest occurred without significant apoptosis, consistent with the altered gene expression detected. PI-103 induced vacuolation and processing of LC-3i to LC-3ii, which are features of an autophagic response. In contrast to PI-103, LY294002 and PI-387 induced apoptosis, indicative of likely off-target effects. PI-103 interacted synergistically or additively with cytotoxic agents used in the treatment of glioma, namely vincristine, BCNU and temozolomide. Compared to individual treatments, the combination of PI-103 with temozolomide significantly improved the response of U87MG human glioma xenografts. Our results support the therapeutic potential for PI3 kinase inhibitors with PI-103-like profile as therapeutic agents for the treatment of glioma.  相似文献   

11.
《Autophagy》2013,9(6):620-622
Upregulation of autophagy may have therapeutic benefit in a range of diseases that include neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington’s disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in cell disease models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.

Addendum to:

Small Molecules Enhance Autophagy and Reduce Toxicity in Huntington's Disease Models

S. Sarkar, E.O. Perlstein, S. Imarisio, S. Pineau, A. Cordenier, R.L. Maglathlin, J.A. Webster, T.A. Lewis, C.J. O'Kane, S.L. Schreiber and D.C. Rubinsztein

Nat Chem Biol 2007; 3:331-8  相似文献   

12.
The present study focused on the action mechanism of S. pneumoniae (Sp) in inducing autophagy in human alveolar epithelial cells. Sp, a gram-positive extracellular bacterium, activates autophagy with considerably increased microtuble-associated protein light chain 3 (LC3) punctation in A549 cells. The accumulation of typical autophagosomes and conjugation of LC3 to phosphatidylethanolamine were observed in Sp-infected cells as an indication of autophagy. Using the pneumolysin (PLY) mutant, we successfully demonstrated that PLY is involved in initiating autophagy without affecting the expression levels of PI3K-III and Beclin1. PLY-mediated autophagy depends on the inhibition of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Furthermore, Sp could also lead to the reactive oxygen species (ROS) hypergeneration in A549 cells. Taken together, Sp infection-induced autophagy is PLY-mediated through ROS hypergeneration and mTOR inhibition. PI3K-I and rapamycin (autophagy inducers) enhanced bacterial clearance, whereas wortmannin (autophagy inhibitor) and acetylcysteine (ROS inhibitor) reduced intracellular bacteria clearance. Thus, Sp-induced autophagy represents a host-protective mechanism, providing new insight into the pathogenesis of respiratory tract Sp infection.  相似文献   

13.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

14.

Background

Glioma is the most common highly aggressive, primary adult brain tumour. Clinical data show that therapeutic approaches cannot reach the expectations in patients, thus gliomas are mainly incurable diseases. Tumour cells can adapt rapidly to alterations during therapeutic treatments related to their metabolic rewiring and profound heterogeneity in tissue environment. Renewed interests aim to develop effective treatments targeting angiogenesis, kinase activity and/or cellular metabolism. mTOR (mammalian target of rapamycin), whose hyper-activation is characteristic for many tumours, promotes metabolic alterations, macromolecule biosynthesis, cellular growth and survival. Unfortunately, mTOR inhibitors with their lower toxicity have not resulted in appreciable survival benefit. Analysing mTOR inhibitor sensitivity, other metabolism targeting treatments and their combinations could help to find potential agents and biomarkers for therapeutic development in glioma patients.

Methods

In vitro proliferation assays, protein expression and metabolite concentration analyses were used to study the effects of mTOR inhibitors, other metabolic treatments and their combinations in glioma cell lines. Furthermore, mTOR activity and cellular metabolism related protein expression patterns were also investigated by immunohistochemistry in human biopsies. Temozolomide and/or rapamycin treatments altered the expressions of enzymes related to lipid synthesis, glycolysis and mitochondrial functions as consequences of metabolic adaptation; therefore, other anti-metabolic drugs (chloroquine, etomoxir, doxycycline) were combined in vitro.

Results

Our results suggest that co-targeting metabolic pathways had tumour cell dependent additive/synergistic effects related to mTOR and metabolic protein expression patterns cell line dependently. Drug combinations, especially rapamycin?+?doxycycline may have promising anti-tumour effect in gliomas. Additionally, our immunohistochemistry results suggest that metabolic and mTOR activity alterations are not related to the recent glioma classification, and these protein expression profiles show individual differences in patients’ materials.

Conclusions

Based on these, combinations of different new/old drugs targeting cellular metabolism could be promising to inhibit high adaptation capacity of tumour cells depending on their metabolic shifts. Relating to this, such a development of current therapy needs to find special biomarkers to characterise metabolic heterogeneity of gliomas.
  相似文献   

15.
Pathological cardiac hypertrophy aggravated myocardial infarction and is causally related to autophagy dysfunction and increased oxidative stress. Rapamycin is an inhibitor of serine/threonine kinase mammalian target of rapamycin (mTOR) involved in the regulation of autophagy as well as oxidative/nitrative stress. Here, we demonstrated that rapamycin ameliorates myocardial ischaemia reperfusion injury by rescuing the defective cytoprotective mechanisms in hypertrophic heart. Our results showed that chronic rapamycin treatment markedly reduced the phosphorylated mTOR and ribosomal protein S6 expression, but not Akt in both normal and aortic‐banded mice. Moreover, chronic rapamycin treatment significantly mitigated TAC‐induced autophagy dysfunction demonstrated by prompted Beclin‐1 activation, elevated LC3‐II/LC3‐I ratio and increased autophagosome abundance. Most importantly, we found that MI/R‐induced myocardial injury was markedly reduced by rapamycin treatment manifested by the inhibition of myocardial apoptosis, the reduction of myocardial infarct size and the improvement of cardiac function in hypertrophic heart. Mechanically, rapamycin reduced the MI/R‐induced iNOS/gp91phox protein expression and decreased the generation of NO and superoxide, as well as the cytotoxic peroxynitrite. Moreover, rapamycin significantly mitigated MI/R‐induced endoplasmic reticulum stress and mitochondrial impairment demonstrated by reduced Caspase‐12 activity, inhibited CHOP activation, decreased cytoplasmic Cyto‐C release and preserved intact mitochondria. In addition, inhibition of mTOR also enhanced the phosphorylated ERK and eNOS, and inactivated GSK3β, a pivotal downstream target of Akt and ERK signallings. Taken together, these results suggest that mTOR signalling protects against MI/R injury through autophagy induction and ERK‐mediated antioxidative and anti‐nitrative stress in mice with hypertrophic myocardium.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a member of the evolutionary phosphatidylinositol kinase-related kinases (PIKKs). mTOR plays a pivotal role in the regulation of diverse aspects of cellular physiology such as body metabolism, cell growth, protein synthesis, cell size, autophagy, and cell differentiation. Immunologically, mTOR has a fundamental part in controlling and shaping diverse functions of innate and adaptive immune cells, in particular, T-cell subsets differentiation, survival, and metabolic reprogramming to ultimately regulate the fate of diverse immune cell types. Researchers report that rapamycin, a selective mTOR inhibitor, and immunosuppressive agent, has surprising immunostimulatory effects on inducing both quantitative and qualitative aspects of virus-specific memory CD8+ T-cells differentiation and homeostasis in a T-cell-intrinsic manner. The mTOR signaling pathway also plays a critical role in dictating the outcome of regulatory T cells (Treg), T helper 17 (Th17) cells, and natural killer (NK) cells proliferation and maturation, as well as the effector functions and cytotoxic properties of NK cells. Manipulation of mTOR activity is a critical therapeutic approach for pharmacological agents that seek to inhibit mTOR. This approach should enhance specific memory CD8 + T-cells responses and induce fully functional effector properties of NK cells to provoke their antitumor and antiviral activities.  相似文献   

17.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation.  相似文献   

19.
PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.  相似文献   

20.
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号