共查询到20条相似文献,搜索用时 0 毫秒
1.
The phenotype of mice lacking the delta isoform of protein kinase C reveals that this isoform curtails signaling events after engagement of the antigen-specific receptor on B cells. The result is a state of non-responsiveness, termed anergy, that represents one form of immunological self-tolerance. 相似文献
2.
3.
Oncogenic viruses infect many cells but rarely lead to tumorigenesis. In this issue of Cell Host & Microbe, Nikitin et?al. describe how a protective DNA damage response acts to suppress transformation in the majority of cells latently infected with Epstein-Barr virus (EBV). 相似文献
4.
The gene DISC1 (Disrupted-in-Schizophrenia 1) is a leading candidate gene for schizophrenia. In this issue, Duan et al. (2007) present evidence implicating DISC1 in the maturation and integration of newly generated neurons in the adult mouse hippocampus. Surprisingly, DISC1 appears to have opposite effects on neurogenesis during development and in adulthood. 相似文献
5.
6.
EMBO J
31
13, 2839–2851 (2012); published online May082012Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncogene-induced accumulation of telomeric DNA damage contributes to the induction of senescence in telomerase-negative tumours.Telomere shortening limits the proliferative capacity of primary human cells after 50–70 cell divisions by induction of replicative senescence activated by critically short, dysfunctional telomeres. Different mechanisms were thought to initiate senescence in response to oncogene activation, which occurs abruptly within a few cell doublings (Serrano et al, 1997). Oncogene-induced senescence (OIS) involves an activation of DNA damage signals at stalled replication forks induced by DNA replication stress (Bartkova et al, 2006; Di Micco et al, 2006). Replication fork stalling in response to oncogene activation preferentially affects common fragile sites of the DNA (Tsantoulis et al, 2008). The ends of eukaryotic chromosomes—the telomeres–represent common fragile sites that are sensitive to replication fork stalling (Sfeir et al, 2009). These data made it tempting to speculate whether replication fork stalling at telomeres was causatively involved in OIS. Studies on replicative senescence in human fibroblast also supported this possibility showing that mitogenic signals amplify DNA damage responses in senescent cells (Satyanarayana et al, 2004).Multiple studies revealed experimental evidences that senescence suppresses tumour progression in mouse models and early human tumours (for review see Collado and Serrano, 2010). The relative contribution of OIS and telomere dysfunction induced senescence (TDIS) to tumour suppression and possible interconnections between the two pathways at the level of checkpoint induction were not investigated in previous studies. In this issue of The EMBO Journal, Suram et al (2012) describe the presence of TDIS in human precursor lesions but not in the corresponding malignant tumours. Mechanistically, the study shows that oncogenic signals cause replication fork stalling, resulting in telomeric DNA damage accumulation and activation of DNA damage checkpoints reminiscent to TDIS. Telomerase expression does not rescue replication fork stalling but prevents the accumulation of DNA damage at telomeres allowing a bypass of OIS.The study has several important implications for molecular pathways and therapeutic approaches in cancer that need to be further explored (Figure 1):Open in a separate windowFigure 1Traditional and new models of senescence in tumour suppression. (A) Traditional model of replicative senescence: Telomerase-negative tumour cell clones experience telomere shortening as a consequence of cell division. After a lack period depending on the initial telomere length, tumour cells accumulate telomere dysfunction and activation of senescence impairs tumour growth. Telomerase activation represents a late event allowing tumour progression. (B) New model of oncogene induced, telomere-dependent senescence: Oncogene activation leads to abrupt accumulation of DNA damage at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could be resistant to OIS and may be selected as the cell type of origin of tumour development.(i) Telomere length independent roles of telomeres in tumour suppressionThe classical model of telomere-dependent tumour suppression indicates that proliferation-dependent telomere shortening leads to telomere dysfunction, activation of DNA damage checkpoints, and induction of senescence suppressing the growth of telomerase-negative tumour clones. Studies on mouse models supported this concept showing that telomere shortening impairs the progression of initiated tumours in a telomere length-dependent manner (Feldser and Greider, 2007). The new data from Suram et al (2012) indicate that oncogene-induced replication fork stalling activates a telomere-dependent senescence checkpoint, which is independent of telomere length. The study shows that replication forks stall in response to oncogene activation throughout the genome. However, stalled replication forks are resolved in non-telomeric regions, whereas fork stalling inside telomeres leads to un-repairable DNA damage in telomerase-negative cells. These findings are in line with recent publication showing accumulation of un-repairable DNA damage in telomeric DNA in response to aging and stress-induced DNA damage (Fumagalli et al, 2012).(ii) Telomere length independent roles of telomerase in tumour progressionFollowing the classical model telomeres in tumour suppression (Figure 1A), telomerase re-activation is required for tumour progression by limiting telomere dysfunction and the induction of DNA damage checkpoints in response to telomere shortening. The new data from Suram et al (2012) indicate that telomerase has an additional telomere length independent role in tumour progression. The study shows that catalytically active telomerase prevents the activation of DNA damage signals originating from stalled replication forks inside telomeres in response to oncogene activation (Figure 1B). The exact mechanisms of telomerase-dependent healing of stalled replication forks at telomeres remain to be elucidated. It is also unclear whether telomerase activity can prevent any type of DNA damage at telomeres as an over-expression of TERT could not suppress irradiation-induced cellular senescence or the persistence of telomeric DDR following irradiation, H2O2, or chemotherapy induced DNA damage (Hewitt et al, 2012).The data could provide a plausible explanation for the increased tumorigenesis in telomerase transgenic mice—a finding which is difficult to explain by telomere length dependent effects of telomerase given the long telomere reserves in mouse tissues (Gonzalez-Suarez et al, 2001). According to the findings of Suram et al (2012), anti-telomerase therapies could have immediate anti-cancer effects in tumours depending on telomerase-mediated healing of stalled replication forks at telomeres. Specific markers for this dependency could be of clinical value. In addition, the data support the concept that somatic stem cells could represent the cell type of origin of cancers. In contrast to differentiated somatic cells, tissues stem cells are often telomerase-positive, indicating that stem cells might be less sensitive to OIS. 相似文献
7.
8.
9.
10.
The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. 总被引:7,自引:0,他引:7 下载免费PDF全文
We isolated a dominant gain-of-function Arabidopsis mutant, accelerated cell death 6 (acd6), with elevated defenses, patches of dead and enlarged cells, reduced stature, and increased resistance to Pseudomonas syringae. The acd6-conferred phenotypes are suppressed by removing a key signaling molecule, salicylic acid (SA), by using the nahG transgene, which encodes SA hydroxylase. This suppression includes phenotypes that are not induced by application of SA to wild-type plants, indicating that SA acts with a second signal to cause many acd6-conferred phenotypes. acd6-nahG plants show hyperactivation of all acd6-conferred phenotypes after treatment with a synthetic inducer of the SA pathway, benzo(1,2, 3)thiadiazole-7-carbothioic acid (BTH), suggesting that SA acts with and also modulates the levels and/or activity of the second defense signal. acd6 acts partially through a NONEXPRESSOR OF PR 1 (NPR1) gene-independent pathway that activates defenses and confers resistance to P. syringae. Surprisingly, BTH-treated acd6-nahG plants develop many tumor-like abnormal growths, indicating a possible role for SA in modulating cell growth. 相似文献
11.
《Autophagy》2013,9(4):702-703
Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. 相似文献
12.
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling. 相似文献
13.
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death. 相似文献
14.
Péter Poór Dóra Szopkó Irma Tari 《In vitro cellular & developmental biology. Plant》2012,48(3):377-382
The ability of salicylic acid and NaCl to induce programmed cell death by disturbing ionic homeostasis was investigated using tomato suspension culture cells. NaCl (300?mM) and salicylic acid (1?mM) inhibited cell growth and caused cell death within 1?wk of exposure. Treatment with NaCl increased the production of reactive oxygen species and the permeability of plasma membrane, but it also led to a reduction in the pH of the culture medium and resulted in a disturbance in ionic homeostasis of the cells. Salicylic acid-induced cell death in tomato suspension culture was also accompanied by production of reactive oxygen species and increases in both electrolyte leakage and pH of the culture media. However, reactive oxygen species production was not significantly different in cultures treated with a lethal salicylic acid concentration and 100?mM NaCl, in which most of the cells survived. A decrease in the K+/Na+ ratio was observed only in those cell cultures in which the salicylic acid treatment induced the death of cells. These results suggest that the decrease of the intracellular K+ concentration and K+/Na+ ratio is a common phenomenon in triggering programmed cell death by lethal concentrations of salicylic acid and NaCl. 相似文献
15.
Mutations and most transgenes that induce ectopic cell death in Drosophila will produce an inhibitory effect on RNA interference (RNAi) in adjacent cells. When extensive cell death is sporadically induced using a heat shock promoted-head involution defective (hs-hid) transgene, molecular attributes of this inhibition can be studied. For a Green Fluorescent Protein (GFP) RNAi construct, cell death causes a greater accumulation of the mature mRNA and the double stranded RNA with an accompanying reduction in the homologous siRNAs. Endogenous transposable element expression is increased and there is an overall reduction in their corresponding siRNAs. The implications of this finding for the conduct of RNAi and potential reasons for its existence are discussed. 相似文献
16.
Ethylene is known to influence plant defense responses including cell death in response to both biotic and abiotic stress factors. However, whether ethylene acts alone or in conjunction with other signaling pathways is not clearly understood. Ethylene overproducer mutants, eto1 and eto3, produced high levels of ethylene and developed necrotic lesions in response to an acute O3 exposure that does not induce lesions in O3-tolerant wild-type Col-0 plants. Treatment of plants with ethylene inhibitors completely blocked O3-induced ethylene production and partially attenuated O3-induced cell death. Analyses of the responses of molecular markers of specific signaling pathways indicated a relationship between salicylic acid (SA)- and ethylene-signaling pathways and O3 sensitivity. Both eto1 and eto3 plants constitutively accumulated threefold higher levels of total SA and exhibited a rapid increase in free SA and ethylene levels prior to lesion formation in response to O3 exposure. SA pre-treatments increased O3 sensitivity of Col-0, suggesting that constitutive high SA levels prime leaf tissue to exhibit increased magnitude of O3-induced cell death. NahG and npr1 plants compromised in SA signaling failed to produce ethylene in response to O3 and other stress factors suggesting that SA is required for stress-induced ethylene production. Furthermore, NahG expression in the dominant eto3 mutant attenuated ethylene-dependent PR4 expression and rescued the O3-induced HR (hypersensitive response) cell death phenotype exhibited by eto3 plants. Our results suggest that both SA and ethylene act in concert to influence cell death in O3-sensitive genotypes, and that O3-induced ethylene production is dependent on SA. 相似文献
17.
《Fly》2013,7(4):337-339
Mutations and most transgenes that induce ectopic cell death in Drosophila will produce an inhibitory effect on RNA interference (RNAi) in adjacent cells. When extensive cell death is sporadically induced using a heat shock promoted-head involution defective (hs-hid) transgene, molecular attributes of this inhibition can be studied. For a Green Fluorescent Protein (GFP) RNAi construct, cell death causes a greater accumulation of the mature mRNA and the double stranded RNA with an accompanying reduction in the homologous siRNAs. Endogenous transposable element expression is increased and there is an overall reduction in their corresponding siRNAs. The implications of this finding for the conduct of RNAi and potential reasons for its existence are discussed. 相似文献
18.
Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen 总被引:16,自引:0,他引:16
O'Donnell PJ Jones JB Antoine FR Ciardi J Klee HJ 《The Plant journal : for cell and molecular biology》2001,25(3):315-323
The molecular events associated with susceptible plant responses to disease-causing organisms are not well understood. We have previously shown that ethylene-insensitive tomato plants infected with Xanthomonas campestris pv. vesicatoria have greatly reduced disease symptoms relative to wild-type cultivars. Here we show that salicylic acid (SA) is also an important component of the susceptible disease response. SA accumulates in infected wild-type tissues and is correlated with necrosis but does not accumulate in ethylene-insensitive plants. Exogenous feeding of SA to ethylene-deficient plants restores necrosis, indicating that reduced disease symptoms are associated with failure to accumulate SA. These results indicate a mechanism for co-ordination of phytohormone signals that together constitute a susceptible response to pathogens. 相似文献
19.
Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10?3 M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca2+ chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension. 相似文献
20.
Shin DM Jeon BY Lee HM Jin HS Yuk JM Song CH Lee SH Lee ZW Cho SN Kim JM Friedman RL Jo EK 《PLoS pathogens》2010,6(12):e1001230
The enhanced intracellular survival (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis) displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner. 相似文献