首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor (BCF) was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn, and Co but moderate for Cd, Cu, Ni, and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn, and Cu, but its potency was moderate for Co, Cr, and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn, and Mn (p < 0.05). In general, the BCFs for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.  相似文献   

2.
The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.  相似文献   

3.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

4.
Abstract

Rapeseed (Brassica campestris L.) cv Pusa Gold plants, exposed to different cadmium (Cd) levels (0, 25, 50 and 100 mg kg?1 soil) in greenhouse, pot culture experiment, were analyzed with reference to distribution of metal, accumulation of biomass and the degree of growth stage Cd-sensitivity. A significant maximum decrease in plant biomass was observed at Cd-exposed flowering stage followed by pre-flowering and post-flowering stages. Activities of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) differentially increased; while, the concentrations of non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH) drastically decreased in plants exposed to Cd at various growth stages. However, the concentrations of GSH and AsA decreased maximally in plant groups exposed to Cd at their flowering stage. The maximum Cd-accumulation occurred in roots followed by leaves and stem. Various Cd levels inhibited also the contents of plant nutrients such as nitrogen (N), phosphorous (P), potassium (K) and sulfur (S) in leaves. The present endeavor hence concludes the existence of close relationships among growth parameters, Cd-sensitivity of phenological stages of the crop and the components of antioxidant system in rapeseed plants exposed at various growth stages.  相似文献   

5.
Phytoremediation of contaminated calcareous desert land in the United Arab Emirates has been investigated. Soils from 12 northern UAE sites, suspected of metal contamination, were acid-extracted and analyzed by ICP-OES for Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Twenty-two plants naturally growing at contaminated sites were sampled and analyzed for their uptake of Co, Cr, Cu, Mn, Ni, Pb, and Zn and eight commercially available plants, grown under controlled conditions, were also studied for their phytoextraction capabilities. The concentration of available Cr was found to be 1300 ± 150 mg/kg in the soil of the Ajman Industrial Zone and 80 ± 10 mg/kg of Pb was found at Bithna. Among the plants investigated, Portulaca oleracea and Iresine herbstii showed potential for Cr(VI) and Pb(II) accumulation, respectively, with bioconcentration factors (BCF) greater than unity. Atriplex halimus accumulated Co(II), Cr(III), and Cu(II) each with a BCF > 1.  相似文献   

6.
The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.  相似文献   

7.
This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH4+, TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH4+-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 100 -102. The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg?1) for Gs and He respectively; whilst Cd (II) had the highest (130–135 L kg?1) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs >1 for Pb (II), Cr (T) and Hg (II) and 0.4–0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators.  相似文献   

8.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

9.
分别对9年生与13年生刨花楠林木叶片氮磷养分之间关系及林木生物量相对生长速率与叶片碳氮磷化学计量比关系进行分析,探讨不同相对生长速率下的林木叶片N、P养分适应特征,并检验相对生长速率假说理论对刨花楠树种的适应性。结果表明:两种年龄刨花楠林木生物量相对生长速率、叶片C、N、P含量及其计量比值均存在显著差异;同一年龄的林木叶片N、P之间存在显著相关性,二者具有协同相关性;9年生林木叶片P含量及C∶P、N∶P与生物量相对生长速率呈二次曲线相关,而13年生林木叶片N、P含量及C∶N、C∶P、N∶P则与生物量相对生长速率均呈线性相关。研究表明,在能满足植物生长所需养分供给的土壤环境中,叶片N、P含量与林木相对生长速率间呈线性正相关,但当土壤中养分供应满足不了植物高速生长时,植物则会对有限的养分资源进行适应性调整。  相似文献   

10.
Abstract

Biology, tolerance, and metal (Pb and Cr) accumulating ability of Gomphrena celosoides were studied under hydroponic conditions. The seedlings were raised in Hoagland’s solution containing different concentrations of Pb (0, 500, 1000, 1500, 2000, 3000, 4000, and 5000?mg l?1) and Cr (0, 50, 100, 150, 200, 300, and 400?mg l?1). Biomass and metal accumulation in different plant parts were determined at seven (7) and fourteen (14) days after stress. Antioxidant enzyme activities, protein, and proline contents were estimated in stressed and unstressed plants. Gomphrena celosoides was able to tolerate Pb and Cr concentrations up to 4000 and 100?mg l?1, respectively in hydroponic solution. Metal accumulation was concentration and duration dependent with the highest Pb (21,127.90 and 117,985.29?mg kg?1) and Cr (3130.85 and 2428.90?mg kg?1) in shoot and root, respectively found in the plants exposed to 5000?mg l?1 Pb and 400?mg l?1 Cr for 14?days. Proline, antioxidant enzyme activities, and protein contents were the highest in plant exposed to higher Pb and Cr concentrations for 7 and 14?days. Gomphrena celosoides could be considered as Pb and Cr accumulator with proline and increase in antioxidant enzyme activities being the tolerance mechanisms.  相似文献   

11.
Abstract

Heavy metal bioaccumulation and translocation properties of aquatic plants are interesting because of their potential use in phytoextraction. However, there is not enough knowledge about the seasonal changes of the metal distribution properties of aquatic plants. Our study focused on seasonal variation of some heavy metals in relation to their bioaccumulation and translocation in Nuphar lutea, a floating leaved, widespread plant that is important to wildlife. In this study, N. lutea, corresponding sediment and water samples were collected at different seasons from Lake Abant (Turkey) and analysed for their heavy metal content (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation and translocation of heavy metal ratios were calculated seasonally. It was found that Cr and Zn were actively transported from sediment to the root, where they accumulated especially in summer; it was also shown that Cu, Mn and Zn were not only taken up from the sediment but also from the surrounding water. The investigations suggested that translocation ratios for leaf/root of Pb, Cr, Mn and Zn reached their highest levels in spring. It was found that the bioaccumulation and translocation of heavy metals at different parts of N. lutea changes with respect to season and the type of heavy metal.  相似文献   

12.
Relative growth and nutrient accumulation rates for tobacco   总被引:9,自引:0,他引:9  
Summary Tobacco plants (Nicotiana tabacum L.) were grown from transplanting until floral expression in the phytotron units of Southeastern Plant Environment Laboratories to evaluate the relationship between relative growth rate (RGR) and relative accumulation rates (RAR) of N, P, K, Ca, and Mg. RAR is calculated to be analogous to RGR. Plants were grown in both controlled-environment rooms with artificial light and air-conditioned greenhouses with natural light at three temperature conditions and three application rates of N-P-K. RGR and RAR were calculated only for the period of grand growth which occurred within the interval from 7 to 32 days after transplanting. In general, neither RGR nor RAR were affected by temperature or nutrient level. However, both temperature and nutrient level affected dry matter accumulation of the plants apparently by an influence on the rapidity with which plants adjusted to their new environment during the initial 7-day interval after transplanting. RAR for P and K were coequal with RGR of the whole plant; thus, the concentrations of P and K within the plant tended to remain constant during growth. RAR for N, Ca, and Mg were less than RGR for the whole plant; thus, internal concentrations of these nutrients declined during growth. RAR of N, Ca, and Mg for the whole plant were equivalent to RGR of the roots. As a rationale for the association of RGR of roots and RAR of N, it is proposed that the soluble carbohydrate pool in the roots concurrently influences both N absorption, as NO3 -, and growth of new roots of immature plants. Research reported in this paper was supported in part by National Science Foundation (RANN) Grants GI-39229 and GI-39230. Operation of the Phytotron Units of Southeastern Plant Environmental Laboratories at Duke and North Carolina State Universities was supported by National Science Foundation Grants GB-28950-1A and GI-28951. Approved as Paper Number 4773 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC. Research reported in this paper was supported in part by National Science Foundation (RANN) Grants GI-39229 and GI-39230. Operation of the Phytotron Units of Southeastern Plant Environmental Laboratories at Duke and North Carolina State Universities was supported by National Science Foundation Grants GB-28950-1A and GI-28951. Approved as Paper Number 4773 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC.  相似文献   

13.
Concentrations of Ni, Co, Cu, Pb, Zn, Cd, Cr and As were determined in aquatic sediments, water and macrophytes collected from a fluvial system, contaminated by mine effluents. Myriophyllum verticillatum collected in May below the trace element point source accumulated 169 µg/g of Ni, 860 µg/g of Co, 37 µg/g of Cu, 31 µg/g of Pb, 92 µg/g of Zn, 6.9 µg/g of Cr and 1,200 µg/g of As (concentrations in dry weight). The aquatic macrophytes Nymphaea odoratae and Pontederia cordata accumulated the investigated trace elements to a much lesser extent. The concentrations of trace elements in Myriophyllum verticillatum decreased from May to August. Correlations were found between the concentrations of total Ni, Co and Cu in the bottom sediment and in the submerged macrophytes. However, there was no correlation between the amounts of these trace elements extractable by 0.5 N HCl from the sediments and the concentrations in the macrophytes.  相似文献   

14.
Aims Recent theories indicate that N is more in demand for plant growth than P; therefore, N concentration and N : C and N : P ratios are predicted to be positively correlated with relative growth rate (RGR) in plants under nutrient-enriched conditions. This prediction was tested in this study.Methods We examined the whole-plant concentrations of C, N and P and RGR, as well as the relationship between RGR and the concentrations and the ratios of N : C, P : C and N : P, for different harvest stages (the days after seed germination) of the seedlings of seven shrub species and four herbaceous species grown in N and P non-limiting conditions. The relationships among plant size, nutrient concentrations and ratios were subsequently determined.Important findings RGR was positively correlated with N concentration and the ratios of N : P and N : C when the data were pooled for all species and for each shrub species, but not for individual herbaceous species. However, the relationship between RGR and P concentration and P : C was not significantly correlated for either shrubs or herbs. The variation of N among harvest stages and species was much greater than that of P, and the variation in N : P ratio was determined primarily by changes in N concentration. The shrub species differed from the herbaceous species in their N and P concentrations, nutrient ratios and in intraspecific relationships between RGR and nutrient ratios. These differences possibly reflect differences in the capacity for P storage and biomass allocation patterns. In general, our data support recent theoretical predictions regarding the relationship between RGR and C : N : P stoichiometry, but they also show that species with different life forms differ in the relationships among RGR and C : N : P stoichimetries.  相似文献   

15.
The relationship between endogenous cytokinin content and relative growth rate (RGR) was studied in cultures of Lemna gibba L. G3 supplied with daily doses of mineral nutrients that were increased exponentially over time. At the optimal level of nutrient supply the RGR was 30–35% day-1. The RGR was regulated by adjusting the rate of nitrogen supply, or it was restricted by addition of 0.5 M abscisic acid (ABA). Another approach used to investigate the specific roles of nitrogen (N) and phosphorus (P), was to transfer optimally growing plants to media without N or P but otherwise complete. The plants were harvested at regular intervals for determination of the RGR and levels of cytokinins of the isopentenyladenosine (iPA) and zeatinriboside (ZR) types with an enzyme-linked immunosorbent assay (ELISA). Levels of both iPA- and ZR-type cytokinins decreased when nitrogen was applied to cultures in growth limiting amounts. The cytokinin levels decreased more rapidly than the RGR when either N or P was lacking in the medium, suggesting an early influence of nutrient availability on cytokinin levels which in turn may induce adaptive response by the plant. RGR retardation induced by ABA did not affect cytokinin levels during the first 4 days of the treatment, and the later effects were small. The experiments gave no indication that ABA is involved in the adaptation response of Lemna plants to nutritional stress.Abbreviations ABA - abscisic acid - BAP - benzylaminopurine - ELISA - enzyme-linked-immunosorbent-assay - iP - isopentenyladenine - iPA - isopentenyladenosine - PBS - phosphate-buffered saline - PVP - polyvinylpyrrolidone - RGR - relative growth rate - RN - relative nitrogen addition rate - Z - trans-zeatin - ZR - trans-zeatin riboside  相似文献   

16.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

17.
ABSTRACT

The increase in municipal solid waste generation, along with high concentrations of heavy metals in environments near municipal landfill, has led to human health hazards. This study investigated heavy metal contamination in water, sediment, and edible plants near a municipal landfill, including the bioaccumulation factor (BAF) and potential health risks. The heavy metal concentrations in the samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr) in water samples were not detected (ND), ND, 0.006 ± 0.01 mg/L, and ND, respectively, and in sediment samples, the concentrations were 1.19 ± 0.44, 3.20 ± 0.62, 0.46 ± 0.21, and 6.97 ± 0.34 mg/kg, respectively. The highest concentrations of As (5.03 ± 0.38), Pb (1.81 ± 0.37), and Cd (1.93 ± 0.13) were found in Marsilea crenata, whereas that of Cr (5.68 ± 0.79) was detected in Ipomoea aquatica. The Cr concentration in all plant species exceeded the standard for vegetables. The BAF values followed the heavy metal concentrations. All plant species have a low potential for accumulating Pb and Cr. The edible plants in this study area might cause health hazards to consumers from As, Pb, and Cd contamination.  相似文献   

18.
The relative addition rate (RAR) technique allows the nutritional control of plant relative growth rate (RGR) by the provision of nutrients at exponential supply rates. The technique, however, was developed with technologically sophisticated aeroponic systems. In this paper, we report on experiments used to adapt the RAR technique to a conventional solution culture system. A background concentration requirement of 36 μM nitrogen (N), with other nutrients supplied in proportion to N, was necessary to produce a constant RGR of Triticum aestivum L. (wheat) at a low RAR. Solution pH changes were reduced by increasing the percentage of NH4 in the nitrogen supply, but the plants exhibited dry weight reductions and symptoms of toxicity above 30% NH4. For wheat, a ratio of 25/75 NH4/NO3 was optimum for minimizing pH changes within the nontoxic range. A test of the effectiveness of the RAR technique using this background concentration and NH4/NO3 ratio showed that RGR increased with RAR with a linear slope of 0.55 and an intercept of 0.07 d-1. Although the relationship between growth rate and nutrient supply was less than the one-to-one dependence of RGR on RAR that has been obtained with more sophisticated apparatus, application of the RAR technique to a conventional solution culture system still affords considerable control of RGR and presents a simple method for growing plants at different levels of nutrient stress and at distinct RGRs.  相似文献   

19.
Toxic Effect of Cadmium on Rice as Affected by Nitrogen Fertilizer Form   总被引:1,自引:0,他引:1  
A nutrient solution experiment was conducted to determine the influence of N forms on growth, oxidative stress, and Cd and N uptake in rice plants. The treatments were consisted of two Cd levels (0 and 1 μmol) and three N forms (NH4)2SO4, NH4NO3 and Ca(NO3)2. The results indicated that without Cd addition in the culture solution, the N forms had no significant effect on all measured parameters, including plant growth, photosynthetic traits, malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and Cd and N concentration, while Cd addition in the medium resulted in significant differences in measured parameters among the three forms of N fertilizers. The least inhibition of growth was noted in (NH4)2SO4-fed plants, and the largest in Ca(NO3)2-fed plants, when plants were exposed to Cd stress. The highest photosynthetic rate and chlorophyll content was also recorded in (NH4)2SO4-fed plants. Addition of Cd caused a remarkable increase in SOD activity and MDA content in plants, and the extent of increase varied with N form, with (NH4)2SO4-fed plants being smallest. In comparison with the control plants, the N concentration in roots and shoots was not significantly affected in (NH4)2SO4-fed plants, but significant decrease in root N concentration was found for the NH4NO3 and Ca(NO3)2-fed plants under Cd stress. Moreover, the significant differences were also noted among the three N forms in both root and shoot Cd concentrations, with (NH4)2SO4-fed plants being the lowest. The results indicated that the toxic effect of Cd on rice varied with the form of N fertilizer.  相似文献   

20.
Introduction: In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials.

Methods: A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared.

Results: AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg?1) and Cd (10 mg kg?1) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control).

Conclusions: The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号