首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(1):79-81
Ticks are gorging-fasting organisms; their life cycle is characterized by alternate off-host (starvation) and on-host (meal) conditions. Their generation time is estimated in several years and many ticks spend more than 95% of their life off the host. They seem to have a unique strategy to endure the off-host state for a long period. Thus, we focused on autophagy, which is induced by starvation and is essential for extension of the lifespan, and hypothesized that ticks also have a system of autophagy to overcome the starved condition. Recently, we showed the existence of a homologue of an ATG gene, ATG12, and its expression pattern from nymphal to adult stages in a three-host tick, Haemaphysalis longicornis. The expression level of HlATG12 was downregulated at the beginning of feeding and was highest at 3 months after engorgement. In addition, the HlAtg12 protein was localized to the region around granule-like structures within midgut cells of unfed adults. These results indicate that HlATG12 functions during unfed stages. Here, a potential role of autophagy in unfed ticks is discussed with regard to reports in other animals, such as yeast, mammal, and fruit fly.

Addendum to: Umemiya R, Matsuo T, Hatta T, Sakakibara S, Boldbaatar D, Fujisaki K. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis. Insect Biochem Mol Biol 2007; 37:975-84  相似文献   

2.
Ticks are gorging-fasting organisms;(1) their life cycle is characterized by alternate off-host (starvation) and on-host (meal) conditions. Their generation time is estimated in several years and many ticks spend more than 95% of their life off the host. They seem to have a unique strategy to endure the off-host state for a long period. Thus, we focused on autophagy, which is induced by starvation and is essential for extension of the lifespan,(2-4) and hypothesized that ticks also have a system of autophagy to overcome the starved condition. Recently, we showed the existence of a homologue of an ATG gene, ATG12, and its expression pattern from nymphal to adult stages in a three-host tick, Haemaphysalis longicornis. The expression level of HlATG12 was downregulated at the beginning of feeding and was highest at 3 months after engorgement. In addition, the HlAtg12 protein was localized to the region around granule-like structures within midgut cells of unfed adults. These results indicate that HlATG12 functions during unfed stages. Here, a potential role of autophagy in unfed ticks is discussed with regard to reports in other animals, such as yeast, mammal, and fruit fly.  相似文献   

3.
Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks. Here, we show the homologue of an ATG gene, ATG12, and its expression pattern from the nymphal to adult stages in the three-host tick Haemaphysalis longicornis. The sequence analysis showed that H. longicornis ATG12 (HlATG12) cDNA is 649bp, has a 411bp ORF coding for a 136-amino acid polypeptide with the carboxy-terminal glycine residue, and has a predicted molecular mass of 15.2kDa. Moreover, RT-PCR revealed that HlATG12 was downregulated at the beginning of feeding, upregulated after engorgement, and downregulated again after molting. The expression level of HlATG12 was highest at 3 months after engorgement. By immuno-electron microscopy, it was demonstrated that HlAtg12 was localized to the region around granule-like structures within midgut cells of unfed adults. In conclusion, HlATG12 might function during unfed and molting stages.  相似文献   

4.
5.
Rhipicephalus (Boophilus) microplus is an obligate haematophagous arthropod and the major problem for cattle industry due to economic losses it causes. The parasite shows a remarkable adaptability to changing environmental conditions as well as an exceptional ability to survive long-term starvation. This ability has been related to a process of intracellular protein degradation called autophagy. This process in ticks is still poorly understood and only few autophagy-related (ATG) genes have been characterized. The aim of the present study was to examine the ESTs database, BmiGI, of R. microplus searching for ATG homologues. We predicted five putative ATG genes, ATG3, ATG4, ATG6 and two ATG8s. Further characterization led to the identification of RmATG8a and RmATG8b, homologues of GABARAP and MAP1LC3, respectively, and both of them belonging to the ATG8 family. PCR analyses showed that the expression level of RmATG8a and RmATG8b was higher in egg and larval stages when compared to ovary and midgut from adult ticks. This up-regulation coincides with the period in which ticks are in a starvation state, suggesting that autophagy is active in R. microplus.  相似文献   

6.
7.
The ultrastructure of the midgut epithelium and digestion in the female tickArgas (Persicargas) arboreus are described before and after feeding, up to oviposition. The epithelium consists of secretory cells, digestive cells (DI and DII), and regenerative cells which may differentiate into any of the other cell types. In unfed ticks, the midgut wall consists mainly of type DII digestive cells retained from a previous feeding, and a few regenerative cells. Within 3 days after the tick feeding, haemolysis of the host blood components occurs in the midgut lumen. Secretory cells, the first differentiation of the regenerative cells, are presumed to produce a haemolysin and an anticoagulant which are released by merocrine and holocrine secretions. The DII cells seen in unfed ticks, and secretory cells which have completed their secretory cycle, start to have a specialized surface for endocytosis characteristic of type DI digestive cells. From 5 to 7 days after feeding up to the female oviposition, type DI cells which have completed their endocytosis are transformed into type DII digestive cells specialized for intracellular digestion and the storage of reserve nutrients required by the tick for long starvation. The various phases of the digestive cycle are considered according to ultrastructural changes of the midgut epithelium.  相似文献   

8.
《Autophagy》2013,9(2):159-172
Leishmania major possesses, apparently uniquely, four families of ATG8-like genes, designated ATG8, ATG8A, ATG8B and ATG8C, and 25 genes in total.  L. major ATG8 and examples from the ATG8A, ATG8B and ATG8C families are able to complement a Saccharomyces cerevisiae ATG8-deficient strain, indicating functional conservation. Whereas ATG8 has been shown to form putative autophagosomes during differentiation and starvation of L. major, ATG8A primarily form puncta in response to starvation - suggesting a role for ATG8A in starvation-induced autophagy. Recombinant ATG8A was processed at the scissile glycine by recombinant ATG4.2 but not ATG4.1 cysteine peptidases of L. major and, consistent with this, ATG4.2-deficient L. major mutants were unable to process ATG8A and were less able to withstand starvation than wild type cells. GFP-ATG8-containing puncta were less abundant in ATG4.2 over-expression lines, in which unlipidated ATG8 predominated, which is consistent with ATG4.2 being an ATG8-deconjugating enzyme as well as an ATG8A-processing enzyme. In contrast, recombinant ATG8, ATG8B and ATG8C were all processed by ATG4.1, but not by ATG4.2. ATG8B and ATG8C both have a distinct subcellular location close to the flagellar pocket, but the occurrence of the GFP-labelled puncta suggest that they do not have a role in autophagy. L. major genes encoding possible ATG5, ATG10 and ATG12 homologues were found to complement their respective S. cerevisiae mutants, and ATG12 localised in part to ATG8-containing puncta, suggestive of a functional ATG5-ATG12 conjugation pathway in the parasite. L. major ATG12 is unusual as it requires C-terminal processing by an as yet unidentified peptidase.  相似文献   

9.
《Autophagy》2013,9(7):961-963
The knowledge of the molecular mechanisms underlying autophagy has considerably improved after the isolation and characterization of autophagy-defective mutants in the yeast Saccharomyces cerevisiae. Two ubiquitin-like conjugation systems are required for yeast autophagy. One of them requires the participation of Atg8 synthesized as a precursor protein, which is cleaved after a Gly residue by a cysteine proteinase called Atg4. The new Gly-terminal residue from Atg8 is activated by Atg7 (an E1-like enzyme) then transferred to Atg3 (an E2-like enzyme) and finally conjugated with membrane-bound phosphatidylethanolamine (PE) through an amide bond. The complex Atg8–PE is also deconjugated by the protease Atg4, facilitating the release of Atg8 from membranes. This modification system, which is essential for the membrane rearrangement dynamics that accompany the initiation and execution of autophagy, is conserved in higher eukaryotes including mammals. We have previously identified and cloned the four human orthologues of the yeast proteinase Atg4, whereas parallel studies have revealed that there are at least six orthologues of yeast Atg8 in mammals (LC3A, LC3B, LC3C, GABARAP, ATG8L/GABARAPL1 and GATE-16/GABARAPL2). Thus, in mammals, the Atg4-Atg8 proteolytic system is composed of four proteinases (autophagins) that may target at least six distinct substrates, contrasting with the simplified yeast system in which one single protease cleaves a sole substrate. Currently, it is unclear why mammals have developed this array of closely related enzymes, as other essential autophagy genes such as Atg3, Atg5 or Atg7 are represented in mammalian cells by a single orthologue. It has been suggested that the multiplication of Atg4 orthologues may reflect a regulatory heterogeneity of functionally redundant proteins or, alternatively, derive from the acquisition of new functions that are not related to autophagy. Our first approach to elucidate this question was based on the generation of autophagin-3/Atg4C-deficient mice, which however presented a minor phenotype. With the generation of autophagin-1/Atg4B-deficient mice, recently reported, we have progressed in our attempt to identify the in vivo physiological and pathological roles of autophagins.  相似文献   

10.
Cdc14 protein phosphatase is critical for late mitosis progression in budding yeast, although its orthologs in other organisms, including mammalian cells, function as stress-responsive phosphatases. We found herein unexpected roles of Cdc14 in autophagy induction after nutrient starvation and target of rapamycin complex 1 (TORC1) kinase inactivation. TORC1 kinase phosphorylates Atg13 to repress autophagy under nutrient-rich conditions, but if TORC1 becomes inactive upon nutrient starvation or rapamycin treatment, Atg13 is rapidly dephosphorylated and autophagy is induced. Cdc14 phosphatase was required for optimal Atg13 dephosphorylation, pre-autophagosomal structure formation, and autophagy induction after TORC1 inactivation. In addition, Cdc14 was required for sufficient induction of ATG8 and ATG13 expression. Moreover, Cdc14 activation provoked autophagy even under normal conditions. This study identified a novel role of Cdc14 as the stress-responsive phosphatase for autophagy induction in budding yeast.  相似文献   

11.
12.
Although most programmed cell death (PCD) during animal development occurs by caspase-dependent apoptosis, autophagy-dependent cell death is also important in specific contexts. In previous studies, we established that PCD of the obsolete Drosophila larval midgut tissue is dependent on autophagy and can occur in the absence of the main components of the apoptotic pathway. As autophagy is primarily a survival mechanism in response to stress such as starvation, it is currently unclear if the regulation and mechanism of autophagy as a pro-death pathway is distinct to that as pro-survival. To establish the requirement of the components of the autophagy pathway during cell death, we examined the effect of systematically knocking down components of the autophagy machinery on autophagy induction and timing of midgut PCD. We found that there is a distinct requirement of the individual components of the autophagy pathway in a pro-death context. Furthermore, we show that TORC1 is upstream of autophagy induction in the midgut indicating that while the machinery may be distinct the activation may occur similarly in PCD and during starvation-induced autophagy signalling. Our data reveal that while autophagy initiation occurs similarly in different cellular contexts, there is a tissue/function-specific requirement for the components of the autophagic machinery.There is a fundamental requirement for multicellular organisms to remove excess, detrimental, obsolete and damaged cells by programmed cell death (PCD).1, 2 In the majority of cases caspase-dependent apoptosis is the principle pathway of PCD; however, there are other modes of cell death with important context-specific roles, such as autophagy.3, 4 Defects in autophagy have significant adverse consequences to normal cellular functions and contribute to the pathogenesis of numerous human diseases. This is particularly evident in cancer where depending on the context autophagy can have tumour-suppressing or -promoting roles. Given the number of clinical trials targeting autophagy in cancer therapy, it will be critically important to understand the context-specific regulation and functions of autophagy.5Autophagy is a highly conserved multi-step catabolic process characterised by the encapsulation of part of the cytoplasm inside a double-membrane vesicle called the autophagosome. Autophagosomes then fuse with lysosomes and the components are subsequently degraded by acidic lysosomal hydrolases.6 The process of autophagy can be functionally divided into four groups: (1) serine/threonine kinase Atg1 (ULK1 in mammals) complex and its regulators responsible for the induction of autophagy; (2) the class III phosphatidylinositol 3-kinase (PI3K) complex, which involves Atg6 and functions in the nucleation of the autophagosome; (3) the Atg8 and Atg12 conjugation systems, which involves several Autophagy-related (Atg) proteins essential for the expansion of autophagosome; and (4) Atg9 and its associated proteins including Atg2 and Atg18, which aids the recycling of lipid and proteins.7 In addition, several of the Atg proteins can function in multiple steps. For example, Atg1 interacts with proteins with different functions (e.g. Atg8, Atg18 and others), suggesting that it is not only required for initiation but also participates in the formation of autophagosomes.8 It is yet to be fully established if the context-specific functions of autophagy have distinct requirements for select components of the autophagy pathway.High levels of autophagy are induced in response to stress, such as nutrient deprivation, intracellular stress, high temperature, high culture density, hormones and growth factor deprivation.9, 10 The target of rapamycin (TOR) pathway is a central mediator in regulating the response to nutrients and growth signalling. TOR functions in two distinct complexes, with regulatory associated protein of TOR (Raptor) in TOR complex 1 (TORC1) or with rapamycin insensitive companion of TOR (Rictor) in TOR complex 2 (TORC2).11, 12, 13, 14, 15 Of these, TORC1 regulates autophagy; in nutrient-rich conditions, TORC1 activity inhibits the Atg1 complex preventing autophagy and cellular stress such as starvation leads to inactivation of TORC1 promoting a dramatic increase in autophagy. TORC2 can also negatively regulate autophagy via the FoxO3 complex in specific context.16Most direct in vivo evidence for a role of autophagy in cell death has emerged from studies in Drosophila.5 Developmentally regulated removal of the Drosophila larval midgut can occur in the absence of canonical apoptosis pathway, whereas inhibiting autophagy delays the process.17, 18 Also, inhibition of autophagy leads to delayed degradation of larval salivary glands in Drosophila.19 Genetic studies have shown that many of the Atg genes known to be involved in starvation-induced autophagy in the Drosophila fat body are also involved in autophagy-dependent degradation of salivary glands and midgut.5, 20, 21 However, systematic studies to test whether starvation-induced autophagy and autophagy required for PCD require identical components have not been carried out, and there are some observations suggesting that there may be distinctions. For example, in Atg7-null mutants autophagy is perturbed but the larval–adult midgut transition proceeds normally.22 In addition, a novel Atg7- and Atg3-independent autophagy pathway is required for cell size reduction during midgut removal.23 Here we show that downregulation of TORC1 activity is required for induction of autophagy during midgut removal. Surprisingly, however, the requirement of part of the autophagy machinery during midgut degradation was found to be distinct to that which is required during autophagy induced by starvation. We report that Atg genes required for autophagy initiation, Atg8a and recycling are all essential for autophagy-dependent midgut removal, whereas other components of the elongation and nucleation steps are not essential.  相似文献   

13.
Autophagy is the major mechanism used by eukaryotic cells to degrade and recycle proteins and organelles. Bioinformatics analysis of the genome of the protozoan parasite Trypanosoma cruzi revealed the presence of all components of the Atg8 conjugation system, whereas Atg12, Atg5, and Atg10 as the major components of the Atg12 pathway could not be identified. The two TcATG4 (autophagin) homologs present in the genome were found to correctly process the two ATG8 homologs after the conserved Gly residue. Functional studies revealed that both ATG4 homologues but only one T. cruzi ATG8 homolog (TcATG8.1) complemented yeast deletion strains. During starvation of the parasite, TcAtg8.1, but not TcAtg8.2, was found by immunofluorescence to be located in autophagosome-like vesicles. This confirms its function as an Atg8/LC3 homolog and its potential to be used as an autophagosomal marker. Most importantly, autophagy is involved in differentiation between developmental stages of T. cruzi, a process that is essential for parasite maintenance and survival. These findings suggest that the autophagy pathway could represent a target for a novel chemotherapeutic strategy against Chagas disease.  相似文献   

14.
15.
《Autophagy》2013,9(3):453-467
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

16.
《Autophagy》2013,9(12):2362-2378
We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.  相似文献   

17.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

18.
ABSTRACT

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of CASP9 decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In CASP9 knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of CASP9 caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added H2O2 in the CASP9 KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not H2O2 rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation.  相似文献   

19.
20.
Patterns in the utilization of host immunoglobulin G (IgG) during nymphal development differed between Dermacentor varibilis (Say) and Ixodes scapularis Say ticks. In unfed nymphs of D. variabilis, host IgG was readily detectable in both hemolymph and whole body homogenates. In unfed nymphs of I. scapularis, host IgG was absent in hemolymph and at very low concentrations in whole body homogenates. Host IgG in unfed nymphs was undoubtedly the remnants of IgG acquired during the larval bloodmeal that persisted through metamorphosis to the nymphal stage. In both tick species, host IgG crossed the midgut into the hemocoel during the latter phases of engorgement. Concentrations of host IgG in I. scapularis declined considerably after replete nymphs molted to the adult stage. In contrast, concentrations of host IgG in D. variabilis remained elevated throughout metamorphosis to the adult stage. When larval D. variabilis were fed on a rat, then 2 months later as nymphs on a rabbit, the rat IgG (“old IgG”) present in unfed nymphs was totally replaced by rabbit IgG (“new IgG”) within 2 d of nymphs attaching to the rabbit. Presumably, the old IgG acquired from a previous bloodmeal was secreted via saliva into the new host. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号