首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《Autophagy》2013,9(7):997-998
Pancreatic cancer, the fourth leading cause of cancer-related death in the United States, is resistant to current chemotherapies. Therefore, identification of different pathways of cell death is important to develop novel therapeutics. Our previous study has shown that triptolide, a diterpene triepoxide, inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. However, the mechanism by which triptolide kills pancreatic cancer cells was not known, hence, this study aimed at elucidating it. Our study reveals that triptolide kills diverse types of pancreatic cancer cells by two different pathways; it induces caspase-dependent apoptotic death in some cell lines and death via a caspase-independent autophagic pathway in the other cell lines tested. Triptolide-induced autophagy requires autophagy-specific genes, atg5 or beclin 1, and its inhibition results in cell death via the apoptotic pathway, whereas inhibition of both autophagy and apoptosis rescues triptolide-mediated cell death. Our study shows for the first time that induction of autophagy by triptolide has a pro-death role in pancreatic cancer cells. Since triptolide kills diverse pancreatic cancer cells by different mechanisms, it makes an attractive chemotherapeutic agent for future use against a broad spectrum of pancreatic cancers.  相似文献   

5.
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.  相似文献   

6.
7.
《Autophagy》2013,9(1):70-79
Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway.  相似文献   

8.
《Autophagy》2013,9(7):1045-1057
Helicobacter pylori evade immune responses and achieve persistent colonization in the stomach. However, the mechanism by which H. pylori infections persist is not clear. In this study, we showed that MIR30B is upregulated during H. pylori infection of an AGS cell line and human gastric tissues. Upregulation of MIR30B benefited bacterial replication by compromising the process of autophagy during the H. pylori infection. As a potential mechanistic explanation for this observation, we demonstrate that MIR30B directly targets ATG12 and BECN1, which are important proteins involved in autophagy. These results suggest that compromise of autophagy by MIR30B allows intracellular H. pylori to evade autophagic clearance, thereby contributing to the persistence of H. pylori infections.  相似文献   

9.
《Autophagy》2013,9(8):1454-1465
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   

10.
11.
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.  相似文献   

12.
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer.  相似文献   

13.
14.
Lung cancer has a relatively poor prognosis with a low survival rate and drugs that target other cell death mechanism like autophagy may help improving current therapeutic strategy. This study investigated the anti-proliferative effect of Licarin A (LCA) from Myristica fragrans in non-small cell lung cancer cell lines—A549, NCI-H23, NCI-H520 and NCI-H460. LCA inhibited proliferation of all the four cell lines in a dose and time dependent manner with minimum IC50 of 20.03?±?3.12, 22.19?±?1.37 µM in NCI-H23 and A549 cells respectively. Hence NCI-H23 and A549 cells were used to assess the ability LCA to induce autophagy and apoptosis. LCA treatment caused G1 arrest, increase in Beclin 1, LC3II levels and degradation of p62 indicating activation of autophagy in both NCI-H23 and A549 cells. In addition, LCA mediated apoptotic cell death was confirmed by MMP loss, increased ROS, cleaved PARP and decreased pro-caspase3. To understand the role of LCA induced autophagy and its association with apoptosis, cells were analysed following treatment with a late autophagy inhibitor-chloroquine and also after Beclin 1 siRNA transfection. Data indicated that inhibition of autophagy resulted in reduced anti-proliferative as well as pro-apoptotic ability of LCA. These findings confirmed that LCA brought about autophagy dependent apoptosis in non-small cell lung cancer cells and hence it may serve as a potential drug candidate for non-small cell lung cancer therapy.  相似文献   

15.
《Autophagy》2013,9(5):480-483
Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKCδ) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKCδ/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKCδ/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.

Addendum to:

Tissue Transglutaminase Inhibits Autophagy in Pancreatic Cancer Cells

U. Akar, B. Ozpolat, K. Mehta, J. Fok, Y. Kondo and G. Lopez-Berestein

Mol Cancer Res 2007; 5:241-9  相似文献   

16.
Pancreatic cancer, the fourth leading cause of cancer-related death in the United States, is resistant to current chemotherapies. Therefore, identification of different pathways of cell death is important to develop novel therapeutics. Our previous study has shown that triptolide, a diterpene triepoxide, inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. However, the mechanism by which triptolide kills pancreatic cancer cells was not known, hence, this study aimed at elucidating it. Our study reveals that triptolide kills diverse types of pancreatic cancer cells by two different pathways; it induces caspase-dependent apoptotic death in some cell lines and death via a caspase-independent autophagic pathway in the other cell lines tested. Triptolide-induced autophagy requires autophagy-specific genes, atg5 or beclin 1 and its inhibition results in cell death via the apoptotic pathway, whereas inhibition of both autophagy and apoptosis rescues triptolide-mediated cell death. Our study shows for the first time that induction of autophagy by triptolide has a pro-death role in pancreatic cancer cells. Since triptolide kills diverse pancreatic cancer cells by different mechanisms, it makes an attractive chemotherapeutic agent for future use against a broad spectrum of pancreatic cancers.Key words: pancreatic cancer, triptolide, apoptosis, caspase-3Pancreatic adenocarcinoma is one of the most lethal human malignancies. It is the fourth leading cause of cancer-related death in the United States. The five-year survival rate for pancreatic cancer is estimated to be <5% due to its aggressive growth, metastasis and resistance to radiation and most systemic chemotherapies. Hence, efforts are ongoing to understand the pathobiology of pancreatic cancer to develop innovative and effective therapies against it. A promising candidate for future therapeutic use against pancreatic cancer is a diterpene triepoxide, triptolide. Our previous studies show that triptolide inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. Since the mechanism by which triptolide kills pancreatic cancer cells was not known, we decided to elucidate it.The K-ras, p53, p16 and DPC4 genes are the most frequently altered genes in pancreatic adenocarcinoma. In this study we have used diverse pancreatic cancer cell lines, MiaPaCa-2, Capan-1, S2-013 and S2-VP10 cells, which have mutations in all the above-mentioned genes and BxPC-3 and Hs766T cells, which have mutations in the p53, p16 and DPC4 genes, but have a wild-type K-ras gene. The treatment of all the cell lines with triptolide results in a significant time- and dose-dependent decrease in cell viability, independent of cell cycle arrest. After treatment with triptolide, only MiaPaCa-2, Capan-1 and BxPC-3 cells show an increase in the apoptosis parameters: cytochrome c release from mitochondria into the cytosol, caspase-3 activation and phosphatidylserine externalization. In contrast to this, S2-013, S2-VP10 and Hs766T cells show an induction of autophagy: an increase in LC3-II levels (by immunoblotting and immufluorescence), increase in acridine orange-positive cells, inhibition of the PtdIns3K/Akt/mTOR pathway and induction of the ERK1/2 pathway. Also, none of the cell lines tested show necrosis as evidenced by the absence of the release of lactate dehydrogenase. These results indicate that triptolide induces apoptosis in MiaPaCa-2, Capan-1 and BxPC-3 cells, whereas it induces autophagy in S2-013, S2-VP10 and Hs766T cells.Since the role of autophagy in cancer was controversial we investigated whether triptolide-induced autophagy has a prosurvival or a pro-death role. As autophagy-associated cell death is independent of caspase-3, we tested the effect of triptolide on pancreatic cancer cells in the absence of caspase-3. Treatment of cells with triptolide post-caspase-3 knockdown shows a significant rescue of cell viability only in MiaPaCa-2, but not S2-013 or S2-VP10 cells. This indicates that in contrast to MiaPaCa-2, triptolide-mediated cell death in S2-013 and S2-VP10 cells is independent of caspase-3. Next, we tested the role of autophagy in triptolide-mediated cell death in pancreatic cancer cells. In spite of a knockdown of autophagy-specific genes (atg5 and beclin 1), treatment of S2-013 and S2-VP10 cells with triptolide show a significant decline in cell viability, which is comparable to the cells treated with triptolide in the presence of autophagy genes. Subsequently we show that death in the absence of autophagy-specific genes is due to the utilization of an alternate cell death pathway, apoptosis. Furthermore, in the absence of both autophagy-specific and apoptosis-specific genes, triptolide-mediated cell death is rescued in S2-013 and S2-VP10 cells. Thus, these results confirm that triptolide-induced autophagy has a pro-death role in S2-013 and S2-VP10 cells and that these cells do not have a defect in the apoptotic machinery; however, they respond to triptolide by activating the autophagic pathway instead of the apoptotic pathway. Our studies also reveal the presence of a crosstalk between the two cell death pathways, apoptosis and autophagy, in pancreatic cancer cells.In conclusion, our study shows for the first time that triptolide induces autophagy in pancreatic cancer cells. It sheds light on the fundamental question as to whether autophagy is protective or causes cell death, proving convincingly that induction of autophagy causes cell death of some pancreatic cancer cells. Although a basal level of autophagy is necessary to maintain cellular homeostasis, its prosurvival role can be switched into a cell death mechanism if the amplitude of autophagy increases above a threshold level which is incompatible with viability, as seen in S2-013, S2-VP10 and Hs766T cells after triptolide treatment. Furthermore, there exists a crosstalk between apoptosis and autophagy in S2-013 and S2-VP10 cells; either both pathways function independently to kill the cells, with autophagy being the preferred pathway or autophagy antagonizes apoptosis and hence apoptosis is seen only after inhibiting autophagy. Although there is no direct correlation between the selection of cell death pathway in response to triptolide and the genotype of the cell lines, the choice of autophagic cell death pathway could depend on the metastatic potential of the cells; S2-013, S2-VP10 and Hs766T cell lines being more metastatic than the others, which merits further investigation. In conclusion, the ability of triptolide to induce cell death in diverse pancreatic cancer cells by either mechanism makes it an attractive chemotherapeutic agent against a broad spectrum of pancreatic cancers.  相似文献   

17.
18.

Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.

  相似文献   

19.

Objectives

Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti‐cancer agent. However, the molecular mechanisms involved remain poorly understood.

Materials and methods

Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA‐β‐gal assay, western blotting and immunofluorescence were performed to determine CGN‐induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN‐induced senescence and autophagy. The anti‐tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models.

Results

We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell‐cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN‐mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti‐tumour effects in vivo.

Conclusions

Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN‐mediated anti‐cancer therapy.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号