共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrea R Hallberg Sabine U Vorrink Danielle R Hudachek Kimberly Cramer-Morales Mohammed M Milhem Robert A Cornell Frederick E Domann 《Epigenetics》2014,9(12):1641-1647
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. 相似文献
2.
E. B. Kuznetsova T. V. Kekeeva S. S. Larin V. V. Zemlyakova O. V. Babenko M. V. Nemtsova D. V. Zaletayev V. V. Strelnikov 《Molecular Biology》2007,41(4):562-570
An optimized methylation-sensitive restriction fingerprinting technique was used to search for differentially methylated CpG islands in the tumor genome and detected seven genes subject to abnormal epigenetic regulation in breast cancer: SEMA6B, BIN1, VCPIP1, LAMC3, KCNH2, CACNG4, and PSMF1. For each gene, the rate of promoter methylation and changes in expression were estimated in tumor and morphologically intact paired specimens of breast tissue (N = 100). Significant methylation rates of 38, 18, and 8% were found for SEMA6B, BIN1, and LAMC3, respectively. The genes were not methylated in morphologically intact breast tissue. The expression of SEMA6B, BIN1, VCPIP1, LAMC3, KCNH2, CACNG4, and PSMF1 was decreased in 44–94% of tumor specimens by the real-time RT-PCR assay. The most profound changes in SEMA6B and LAMC3 suggest that these genes can be included in biomarker panels for breast cancer diagnosis. Fine methylation mapping of the most frequently methylated CpG islands (SEMA6B, BIN1, and LAMC3) provides a fundamental basis for developing efficient methylation tests for these genes. 相似文献
3.
The study on DNA methylation pattern in different human tissues attracts increasing interest nowadays, but a systematic analysis of CpG island methylation pattern between both somatic tissues and gametocyte is still lacking. In this work, we analyzed the CpG island methylation data of sperm and other 11 somatic tissues from Human Epigenome Project, and found that the CpG island methylation profiles are highly correlated between somatic tissues, while the methylation profile in sperm is quite distinct. Furthermore, we observed that in the six tissues investigated, there is no obvious correlation between the methylation level of promoter CpG islands and corresponding gene expression across different tissues. 相似文献
4.
Beri S Tonna N Menozzi G Bonaglia MC Sala C Giorda R 《Journal of neurochemistry》2007,101(5):1380-1391
Tissue-specific gene expression can be controlled by epigenetic modifications such as DNA methylation. SHANK3, together with its homologues SHANK1 and SHANK2, has a central functional and structural role in excitatory synapses and is involved in the human chromosome 22q13 deletion syndrome. In this report, we show by DNA methylation analysis in lymphocytes, brain cortex, cerebellum and heart that the three SHANK genes possess several methylated CpG boxes, but only SHANK3 CpG islands are highly methylated in tissues where protein expression is low or absent and unmethylated where expression is present. SHANK3 protein expression is significantly reduced in hippocampal neurons after treatment with methionine, while HeLa cells become able to express SHANK3 after treatment with 5-Aza-2'-deoxycytidine. Altogether, these data suggest the existence of a specific epigenetic control mechanism regulating SHANK3, but not SHANK1 and SHANK2, expression. 相似文献
5.
6.
Ashley A Smith Yen-Tsung Huang Melissa Eliot E Andres Houseman Carmen J Marsit John K Wiencke Karl T Kelsey 《Epigenetics》2014,9(6):873-883
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention. 相似文献
7.
《Epigenetics》2013,8(6):873-883
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention. 相似文献
8.
Jinghe Liu Xingwei Liang Jiaqiao Zhu Liang Wei Yi Hou Da-Yuan Chen Qing-Yuan Sun 《遗传学报》2008,35(9):559-568
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones. 相似文献
9.
Min-Ae Song Theodore M Brasky Catalin Marian Daniel Y Weng Cenny Taslim Ramona G Dumitrescu Adana A Llanos Jo L Freudenheim Peter G Shields 《Epigenetics》2015,10(12):1177-1187
Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer. 相似文献
10.
11.
Rose AE Wang G Hanniford D Monni S Tu T Shapiro RL Berman RS Pavlick AC Pagano M Darvishian F Mazumdar M Hernando E Osman I 《Pigment cell & melanoma research》2011,24(1):197-206
In this study, we investigated the mechanism(s) of altered expression of protooncogene SKP2 in metastatic melanoma and its clinical relevance in patients with metastatic melanoma. The genomic status of SKP2 was assessed in cell lines by sequencing, single nucleotide polymorphism array, and genomic PCR. Copy number status was then evaluated for concordance with SKP2 mRNA and protein expression. SKP2 protein was further evaluated by immunohistochemistry in 93 human metastatic tissues. No mutations were identified in SKP2. Increased copy number at the SKP2 locus was observed in 6/14 (43%) metastatic cell lines and in 9/22 (41%) human metastatic tissues which was associated with overexpression of SKP2 protein. Overexpression of SKP2 protein in human tissues was associated with worse survival in a multivariate model controlling for the site of metastasis. Copy number gain is a major contributing mechanism of SKP2 overexpression in metastatic melanoma. Results may have implications for the development of therapeutics that target SKP2. 相似文献
12.
Debina Sarkar Euphemia Y Leung Bruce C Baguley Graeme J Finlay Marjan E Askarian-Amiri 《Epigenetics》2015,10(2):103-121
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma. 相似文献
13.
Raghunath Chatterjee Charles Vinson 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2012,1819(7):763-770
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~ 15% are unmethylated. Five percent of CGs cluster into ~ 20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30 million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space. 相似文献
14.
Hagen Klett Yesilda Balavarca Reka Toth Biljana Gigic Nina Habermann Dominique Scherer 《Epigenetics》2018,13(4):386-397
DNA methylation is recognized as one of several epigenetic regulators of gene expression and as potential driver of carcinogenesis through gene-silencing of tumor suppressors and activation of oncogenes. However, abnormal methylation, even of promoter regions, does not necessarily alter gene expression levels, especially if the gene is already silenced, leaving the exact mechanisms of methylation unanswered. Using a large cohort of matching DNA methylation and gene expression samples of colorectal cancer (CRC; n = 77) and normal adjacent mucosa tissues (n = 108), we investigated the regulatory role of methylation on gene expression. We show that on a subset of genes enriched in common cancer pathways, methylation is significantly associated with gene regulation through gene-specific mechanisms. We built two classification models to infer gene regulation in CRC from methylation differences of tumor and normal tissues, taking into account both gene-silencing and gene-activation effects through hyper- and hypo-methylation of CpGs. The classification models result in high prediction performances in both training and independent CRC testing cohorts (0.92<AUC<0.97) as well as in individual patient data (average AUC = 0.82), suggesting a robust interplay between methylation and gene regulation. Validation analysis in other cancerous tissues resulted in lower prediction performances (0.69<AUC<0.90); however, it identified genes that share robust dependencies across cancerous tissues. In conclusion, we present a robust classification approach that predicts the gene-specific regulation through DNA methylation in CRC tissues with possible transition to different cancer entities. Furthermore, we present HMGA1 as consistently associated with methylation across cancers, suggesting a potential candidate for DNA methylation targeting cancer therapy. 相似文献
15.
16.
Lindsay M. Reynolds Kurt Lohman Gary S. Pittman R. Graham Barr Gloria C. Chi Joel Kaufman 《Epigenetics》2017,12(12):1092-1100
Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10?22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking. 相似文献
17.
18.
Gangning Liang 《Epigenetics》2017,12(6):416-432
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival. 相似文献
19.
Bigl M Jandrig B Horn LC Eschrich K 《Biochemical and biophysical research communications》2008,377(2):720-724
A possible epigenetic regulation of the two isoenzymes of fructose 1,6-bisphosphatase (FBPase) was studied in liver, muscle, mamma, breast cancer and in different cancer cell lines. Results obtained after bisulfite sequencing revealed a different CpG methylation of both promoters in liver, muscle and breast tissue which is putatively involved in the cell-type specific gene expression of the two enzymes. In tumor cell lines, demethylation with 5-aza-deoxycytidine activated the expression of both isoenzymes. Additional inhibition of histone deacetylase with trichostatin A further increased FBPase mRNA concentrations. Since cancers typically have an abnormal energy metabolism and exhibit a low gluconeogenic phenotype, it was studied whether promoter methylation contributes to the decreased expression of FBPase in breast cancer. When non-malignant and malignant tissue samples from the same patient were compared a correlation between an increase of FBPase promoter methylation and a decrease of FBPase mRNA levels was observed. 相似文献
20.
泛素化修饰是蛋白质的一种重要的翻译后水平修饰,而且有着多种不同的生物学功能,对蛋白质的结构与功能、基因表达调控以及蛋白质-蛋白质/其它分子相互作用等多个方面有着重要的调控作用。Rad6即是酵母中的一种重要的泛素载体蛋白。Rad6通过泛素化修饰多种靶蛋白在DNA的损伤修复中发挥着重要作用。文章重点讨论了Rad6在DNA损伤修复方面的功能以及在正常情况下对染色质结构和基因表达调控的影响。 相似文献