首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a major intracellular degradation system by which cytoplasmic components are enclosed by autophagosomes and delivered to lysosomes. Formation of the autophagosome requires a set of autophagy-related (Atg) proteins. Among these proteins, the ULK1 complex, which is composed of ULK1 (or ULK2), FIP200, Atg13, and Atg101, acts at an initial step. Previous studies showed that ULK1 and FIP200 also function in pathways other than autophagy. However, whether Atg13 and Atg101 act similarly to ULK1 and FIP200 remains unknown. In the present study, we generated Atg13 knockout mice. Like FIP200-deficient mice, Atg13-deficient mice die in utero, which is distinct from most other types of Atg-deficient mice. Atg13-deficient embryos show growth retardation and myocardial growth defects. In cultured fibroblasts, Atg13 deficiency blocks autophagosome formation at an upstream step. In addition, sensitivity to tumor necrosis factor alpha (TNF-α)-induced apoptosis is enhanced by deletion of Atg13 or FIP200, but not by other Atg proteins, as well as by simultaneous deletion of ULK1 and ULK2. These results suggest that Atg13 has both autophagic and nonautophagic functions and that the latter are essential for cardiac development and likely shared with FIP200 but not with ULK1/2.  相似文献   

2.
The yeast Atg1 serine/threonine protein kinase and its mammalian homologs ULK1 and ULK2 play critical roles during the activation of autophagy. Previous studies have demonstrated that the conserved C-terminal domain (CTD) of ULK1 controls the regulatory function and localization of the protein. Here, we explored the role of kinase activity and intramolecular interactions to further understand ULK function. We demonstrate that the dominant-negative activity of kinase-dead mutants requires a 7-residue motif within the CTD. Our data lead to a model in which the functions of ULK1 and ULK2 are controlled by autophosphorylation and conformational changes involving exposure of the CTD. Additional mapping indicates that the CTD contains other distinct regions that direct membrane association and interaction with the putative human homologue of Atg13, which we have here characterized. Atg13 is required for autophagy and Atg9 trafficking during autophagy. However, Atg13 does not bind the 7-residue dominant-negative motif in the CTD of ULK proteins nor is the inhibitory activity of the CTDs rescued by Atg13 ectopic expression, suggesting that in mammalian cells, the CTD may interact with additional autophagy proteins.  相似文献   

3.
ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 subunit (in Schizosaccharomyces pombe) or the Atg29-Atg31 heterodimer (in Saccharomyces cerevisiae). With mutual exclusivity of, and no detectable homology between, the Atg29-Atg31 dimer and Atg101, knowledge about the roles of these proteins in autophagy induction is an important piece in the puzzle of understanding the molecular mechanism of autophagy initiation. A recent study reporting the structure of the S. pombe homolog Atg101 bound to the Atg13HORMA domain is a notable contribution to this knowledge (see the punctum in this issue of the journal).  相似文献   

4.
ATG13     
《Autophagy》2013,9(6):944-956
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

5.
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

6.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

7.
The Atg1/ULK complex functions as the most upstream factor among Atg proteins to initiate autophagy. ATG101 is a constitutive component of the Atg1/ULK complex in most eukaryotes except for budding yeast, and plays an essential role in autophagy; however, the structure and functions of ATG101 were largely unknown. Recently, we determined the crystal structure of fission yeast Atg101 in complex with the closed HORMA domain of Atg13, revealing that Atg101 is also a HORMA protein with an open conformation. These 2 HORMA proteins play essential roles in autophagy initiation through recruiting downstream factors to the autophagosome formation site.  相似文献   

8.
《Autophagy》2013,9(6):758-765
The serine/threonine kinase Atg1 plays an essential role downstream of TOR for the regulation of autophagy. In yeast, where Atg1 was first identified, a complex regulatory mechanism has been described that includes at least seven other interacting proteins and a phosphorylation-dependent switch. Recent findings confirm that the mammalian Atg1 homologues ULK1 and 2 have autophagy regulatory roles. However, we and others have also demonstrated mechanistic differences with the yeast model and between these two Atg1 family members. Here, we elaborate on our growing understanding of Atg1 function, incorporating findings from yeast, C. elegans, D. melanogaster and mammalian cells. We propose that through evolution, Atg1 proteins have adopted additional cellular functions and regulatory mechanisms, which could involve multiple gene family isoforms working within multi-functional protein complexes. The gene family expansion observed in higher eukaryotes might reflect an increased functional diversity of Atg1 proteins in cell growth, differentiation and survival.  相似文献   

9.
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.  相似文献   

10.
Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable ~3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1–Atg13–FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1–Atg13–FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the ~3-MDa ULK1–Atg13–FIP200 complex.  相似文献   

11.
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

12.
《Autophagy》2013,9(3):514-517
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

13.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   

14.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

15.
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.  相似文献   

16.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

17.
The conserved Ser/Thr kinase Atg1/ULK1 plays a crucial role in the regulation of autophagy. However, only very few Atg1 targets have been identified, impeding elucidation of the mechanisms by which Atg1 regulates autophagy. In our study, we determined the Saccharomyces cerevisiae Atg1 consensus phosphorylation sequence using a peptide array-based approach. Among proteins containing this sequence we identified Atg9, another essential component of the autophagic machinery. We showed that phosphorylation of Atg9 by Atg1 is required for phagophore elongation, shedding light on the mechanism by which Atg1 regulates early steps of autophagy.  相似文献   

18.
Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51-like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.  相似文献   

19.
Autophagy, the cell process of self‐digestion, plays a pivotal role in maintaining energy homoeostasis and protein synthesis. When required, it causes degradation of long‐lived proteins and damaged organelles, indicating that it may play a dual role in cancer, by both protecting against and promoting cell death. The autophagy‐related gene (Atg) family, with more than 35 members, regulates multiple stages of the process. Serine/threonine protein kinase Atg1 in yeast, for example, can interact with other ATG gene products, functioning in autophagosome formation. One mammalian homologue of Atg1, UNC‐51‐like kinase 1 (ULK1) and its related complex ULK1–mAtg13–FIP200 can mediate autophagy under nutrient‐deprived conditions, by protein–protein interactions and post‐translational modifications. Although specific mechanisms of how ULK1 and its complex transduces upstream signals to the downstream central autophagy pathways is not fully understood, past studies have indicated that ULK1 can both suppress and promote tumour growth under different conditions. Here, we summarize some properties of ULK1 which can regulate autophagy in cancer, which may shed new light on future cancer therapy strategies, utilizing ULK1 as a potential new target.  相似文献   

20.
Autophagy, the starvation-induced degradation of bulky cytosolic components, is up-regulated in mammalian cells when nutrient supplies are limited. Although mammalian target of rapamycin (mTOR) is known as the key regulator of autophagy induction, the mechanism by which mTOR regulates autophagy has remained elusive. Here, we identify that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2. The mammalian Atg13 binds both ULK1 and ULK2 and mediates the interaction of the ULK proteins with FIP200. The binding of Atg13 stabilizes and activates ULK and facilitates the phosphorylation of FIP200 by ULK, whereas knockdown of Atg13 inhibits autophagosome formation. Inhibition of mTOR by rapamycin or leucine deprivation, the conditions that induce autophagy, leads to dephosphorylation of ULK1, ULK2, and Atg13 and activates ULK to phosphorylate FIP200. These findings demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号