首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fe chelate o,p-EDDHA/Fe3+, in addition to o,o-EDDHA/Fe3+, was found recently to be a component of commercial EDDHA/Fe3+ chelates. The European Regulation on fertilisers has included o,p-EDDHA as an authorized chelating agent. The efficacy of o,o-EDDHA/Fe3+, o,p-EDDHA/Fe3+ and EDTA/Fe3+ chelates as Fe sources in plant nutrition was studied. Iron-chelate reductase (FC-R) in young cucumber plants (Cucumis sativus L.) roots reduced o,p-EDDHA/Fe3+ faster than o,o-EDDHA/Fe3+, EDTA/Fe3+ and a commercial source of EDDHA/Fe3+. The o,p-EDDHA/Fe3+ chelate was also more effective than the o,o-EDDHA/Fe3+ in decreasing the severity of Fe-deficiency chlorosis in leaves of young soybean (Glycine max L.) plants grown hydroponically. The o,p-EDDHA ligand was more effective in the short-term than the EDTA and o,o-EDDHA ligands at dissolving Fe from selected Fe minerals and soils. However, the ultimate quantity of dissolve Fe was greatest with the o,o-EDDHA ligand.  相似文献   

2.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

3.
In order to investigate the dependence of growth rate upon plant concentrations of iron, manganese and zinc, Betula pendula seedlings were cultivated in a hydroponic system. In three different experiments, all essential nutrient elements except iron, manganese or zinc, were titrated in non-growth limiting amounts at low external concentrations. The solution was continuously recirculated and sprayed on the roots. The micronutrients (Fe, Mn and Zn) were added as addition rates, RA (day-1), relative to the calculated internal amount in the plants. No chelates were added to the culture solution.At steady-state nutrition, plant relative growth rate showed a linear dependence upon the internal concentration of the limiting micronutrient. These data do not support the Steenbjerg effect where negative correlations between growth and plant nutrient concentrations have been reported. Steady-state nutrition was associated with very different growth responses to the different limiting nutrients.  相似文献   

4.
Nutrient management recommendations for fruit crops lack the understanding of the efficiency of soil fertilisation with manganese (Mn) and zinc (Zn), which could substitute, in part, the traditional foliar applications. Fruit yield of trees in response to Zn and Mn supply via soil may be limited either by sorption reactions with soil colloids or low solubility of fertilisers. We investigated the effects of fertiliser sources and rates of Mn and Zn applied to soils with different sorption capacities on nutrient uptake, biochemical responses and biomass of Citrus. Two experiments were carried out with 2‐year‐old sweet orange trees that received applications of Mn or Zn. The first experiment evaluated the application of Mn fertilisers (MnCO3 and MnSO4) at three levels of the nutrient (0, 0.7 and 3.5 g plant?1 of Mn) in two types of soil (18.1% and 64.4% of clay, referred to as sandy loam and clay soils, respectively). The second experiment, likewise, evaluated Zn fertilisers (ZnO and ZnSO4) and nutrient levels (0, 1.0 and 5.0 g plant?1 of Zn). Application of Mn and Zn increased nutrient availability in the soils as well as leaf nutrient concentrations in the trees. The lowest rates, 0.7 g plant?1 of Mn and 1.0 g plant?1 of Zn, both as sulphate, were sufficient to supply these micronutrients to sufficient levels in leaves, flowers and fruits. Metal toxicity to plants occurred with higher doses of both nutrients and to a large extent in the sandy soil. In this case, protein bands lower than 25 kDa were observed as well a decrease on leaf chlorophyll content. In the clay soil, despite increased micronutrient concentrations in the plant, responses were less pronounced because of higher adsorption of metals in the soil. Superoxide dismutase (SOD, EC 1.15.1.1) isoenzyme activity was determined by non‐denaturing polyacrylamide gel electrophoresis (PAGE). The Cu/Zn‐SOD isoenzymes increased with increased Zn rates, but in contrast, when Mn was applied at the highest rate, the activity of Cu/Zn‐SODs decreased. The SOD activity pattern observed indicated increased production of superoxide and consequently an oxidative stress condition at the highest rates of Zn and Mn applied. The results demonstrated that the soil application of Mn and Zn can supply nutrient demands of orange trees, however the low solubility of fertilisers and the high sorption capacity of soils limit fertilisation efficiency. On the contrary, application of sulphate source in sandy soils may cause excess uptake of Mn and Zn and oxidative stress, which impairs the photosynthetic apparatus and consequently tree growth.  相似文献   

5.
It has been difficult to impose different degrees of Zn deficiency on Poaceae species in nutrient solution because most chelators which would control Zn to low activities also bind Fe3+ so strongly that Poaceae species cannot obtain adequate Fe. Recently, a method has been developed to provide buffered Fe2+ at levels adequate for rice using Ferrozine (FZ), and use of other chelators to buffer the other micronutrient cations. The use of Fe2+ buffered with FZ in nutrient solutions in which Zn is buffered with HEDTA or DTPA was evaluated for study of Zn deficiency in rice compared to a conventional nutrient solution technique. The results showed that growth of rice plants in FZ+HEDTA-buffered nutrient solution was similar to that in the conventional nutrient solution. Severe zinc deficiency symptoms were observed in 28-day-old rice seedlings cultured with HEDTA-buffered nutrient solution at Zn2+ activities < 10-10.6 M. With increasing free Zn2+ activities, concentrations of Zn, Fe, Cu, and Mn in shoots and roots were quite similar for the FZ+HEDTA-buffered nutrient solution and the conventional nutrient solution techniques. The percentages of water soluble Zn, Fe, Cu and Mn in shoots with HEDTA-buffered nutrient solution were also similar to those with the conventional solution. However, with DTPA-buffered nutrient solution, the rice seedlings suffered severe Fe deficiency; adding more FeFZ3 corrected the Fe-chlorosis but shifted microelement buffering. Further, much higher total Zn concentrations are required to provide adequate Zn2+ in DTPA-buffered solutions, and the contents of Mn and Cu in shoots and roots cultured with DTPA-buffered solutions were much higher than those with the conventional or HEDTA-buffered solutions. In conclusion, DTPA-buffered nutrient solutions are not suitable but the FZ/HEDTA-buffered nutrient solution technique can be used to evaluate genotypic differences in zinc efficiency in rice.  相似文献   

6.
Relatively little is known about the responses of plants to micronutrients when these nutrients are maintained at the very low levels found in soils of low fertility. We have determined the requirement of barley (Hordeum vulgare L. cv Herta) for ionic Mn2+ in plant culture solutions using the chelating agent HEDTA as a buffer for micronutrient metal ions. The chemical activity of Mn2+ was varied approximately 10,000-fold from log(Mn2+)=–10.8 to –6.8 (pMn 10.8 to pMn 6.8), while holding constant the activities of the other micronutrient cations. Growth, appearance, and composition of Herta barley indicated that log(Mn2+) of approximately –8.3 would permit optimal dry matter production and normal plant development. The specific accumulation rate of Mn by 15 to 23 day old seedlings was a linear function of the Mn2+ activity in solution. At log(Mn2+) of about –9.8 or below, barley seedlings were unable to accumulate significant amounts of Mn, and at some harvests, suffered a net loss of Mn to solution. Seedlings younger than 11 days old were ineffective accumulators of several cations, including Mn, Fe, Zn, Cu, Mg, and Ca. Differences in Mn availability did not influence uptake of other cations, except that Cu uptake by roots increased with increasing Mn uptake.Abbreviations MES 2-(N-morpholino)-ethanesulphonic acid - HEDTA N-(2-hydroxyethyl)ethylene-dinitrilotriacetic acid - DTPA diethylenetrinitrilopentaacetic acid  相似文献   

7.
Summary Uptake of Cd and micronutrient metals by intact tomato plants (Lycopersicon esculentum, cv. Wisconsin-55) from solution cultures was investigated by establishing four levels of Cd-ion activity in the presence or absence of a metal-complexing agent (±EDTA). Activity ratios of Cd, Cu, Mn, Ni, and Zn were controlled with chelating resin while activity ratios of K, Ca, and Mg were controlled with a strong-acid cation-exchange resin. Hydrogen ion activity was controlled with a weak-acid cation-exchange resin and P activity by a cation-exchange resin containing adsorbed polynuclear hydroxy-Al. The concentrations of all nutrients and Cd were maintained at concentrations similar to those occuring in solutions of sludge-amended soils. The EDTA treatments increased the concentrations of Cu and Ni in hydroponic solution by approximately four orders of magnitude, Zn by two orders of magnitude, Cd by a factor of 50, Mn by a factor of 2.4, and Fe by a factor of 1.6 Neither the Cd nor the EDTA treatments affected plant yield, and Cd treatments did not significantly affect uptake of other elements. EDTA treatments inhibited Fe uptake, enhanced Cu uptake, and had little effect on the uptake of Cd, Zn, and Mn. Accumulation of Cd, Zn, Mn, and Cu in plant shoots appears to be related to their respective ionic activities rather than their concentrations in hydroponic solution. Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and by the United States Environmental Protection Agency through Grant CR807270010.  相似文献   

8.
Pot experiment was conducted to study the effect of biofertilizers (inoculation with different bacterial isolates), foliar spraying with some micronutrients (Mn, Zn, Fe and Mn+Zn+Fe) and their interaction on growth, physiological parameters and nutrients content of wheat plants grown on reclaimed soil. Pot experiment was conducted in the greenhouse of National Research center, The experimental design was split plot with four replicates. Four biofertilizer treatments (un‐inoculated, Bacillus polymyxa, Azotobacter chroococcum or Azosprillium barasilense) were used and randomly distributed in the main pots. The foliar treatments with micronutrients were randomly distributed in the sub plots. The growth parameters (plant height, leaf area, roots, shoots and whole plant dry weights and number of tillers & leaves per plant); some physiological parameters (soluble sugar %, protein %, polysaccharide %, chl. A+b μg cm?1 leaf per plant, carotenoids μg g?1, IAA mg kg?1 and psll mol DCPIP reduced per mg chl. per h) and nutrient contents (N, P, K, Mg, Mn, Zn and Cu) of wheat plants were significantly increased by inoculating wheat grains with different bacteria as compared with un‐inoculated plants (control). The highest values of all the mentioned parameters were obtained by using Azospirillum brasilense followed by Azotobacter chroococcum and Bacillus polymyxa in decreasing order. Foliar spraying treatments significantly increased the growth parameters, physiological parameters as well as nutrients content of wheat plants as compared with control. Highest values were obtained by using (Mn+Fe+Zn) treatment followed by Zn, Fe and Mn in decreasing order. Micronutrients in wheat plants differed as the foliar treatments were differed, so application of any micronutrient individually significantly increased its content and enhanced the content of other micronutrients in wheat. Interaction between the used biofertilizers and foliar spraying with micronutrients significantly affected all the studied parameters of wheat plants, the highest were obtained by inoculating wheat grains with Azospirillum brasilense and spraying the plants with (Mn+Fe+Zn) treatment, while the lowest values were attained by un‐inoculated grains (control) and spraying the wheat plants with tap water (control). Effective microorganisms in combination with micronutrients could be recommended to farmers to lead higher wheat yield.  相似文献   

9.
Zinc (Zn) is an essential micronutrient required for growth and development of all organisms. Deficiency of Zn in humans is widespread, affecting 25% of world population and efforts are underway to develop crop plants with high levels of Zn in their edible parts. When strategies for enhancing Zn in crop plants are designed, it is essential to exclude cadmium (Cd), a toxic analogue of Zn. In the present work, a high affinity and high specificity zinc transporter gene (tzn1) from Neurospora crassa was cloned and introduced into Nicotiana tabacum with the objective of enhancing the potential of plants for zinc acquisition. When grown in hydroponic medium spiked with 65Zn, transgenic plants showed enhanced accumulation of Zn (up to 11 times) compared to control plants, which was confirmed further by environmental scanning electron microscopy coupled with Energy Dispersive X‐ray analysis. More importantly, no significant difference in uptake of Cd2+, Fe2+, Ni2+, Cu2+, Mn2+ and Pb2+ between the transgenic and control plants was observed. The present studies have shown that Neurospora crassa tzn1 is a potential candidate gene for developing transgenic plants for improving Zn uptake, without co‐transport of Cd and may have implications in Zn phytofortification and phytoremediation.  相似文献   

10.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

11.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

12.
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg−1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.  相似文献   

13.
Iron chlorosis is commonly corrected by the application of EDDHA chelates, whose industrial synthesis produces o,oEDDHA together with a mixture of regioisomers and other unknown by-products. HJB, an o,oEDDHA analogous, is a new chelating agent with a purer synthesis pathway than EDDHA. The HJB/Fe3+ stability constant is intermediate between the racemic and meso o,oEDDHA/Fe3+ stereoisomers. This work studied the efficacy of HJB as a Fe source in plant nutrition. No significant differences between o,oEDDHA/Fe3+, HJB/Fe3+ and HBED/Fe3+ were observed when they are used as substrates of the iron-chelate reductase of mild chlorotic cucumber plants. Chelates prepared with the stable isotope 57Fe were used in both soil and hydroponic experiments. In the hydroponic experiment, nutrient solutions with low doses of chelates were renewed weekly. Soybean plants treated with o,oEDDHA/57Fe3+ recorded the highest results in biomass, SPAD index and Fe nutrition. In the soil experiment, chelates were added once at a rate of 2.5 mg Fe per kg of a calcareous soil. Soybean plants treated with HJB/57Fe3+ recorded a higher biomass and SPAD index in young leaves than the plants treated with o,oEDDHA/57Fe3+; however, 57Fe and total Fe concentrations in leaves were lower. The results of both pot experiments are associated with a faster ability by o,oEDDHA to provide Fe to the plants and with a more continuous supply of Fe from HJB/Fe3+. HJB/57Fe3+ effectively alleviated the Fe-deficiency chlorosis of soybean with a longer lasting effect than o,oEDDHA/57Fe3+.  相似文献   

14.
Iron Uptake and Translocation by Macrocystis pyrifera   总被引:4,自引:0,他引:4       下载免费PDF全文
Manley SL 《Plant physiology》1981,68(4):914-918
Parameters of iron uptake have been determined for blade tissue of Macrocystis pyrifera (L.) C. Ag. These include the effects of iron concentration, light, various inhibitors, and blade type. All experiments were conducted in the defined artificial seawater Aquil. Iron uptake is light independent, energy dependent, and dependent on the reduction from Fe3+ to Fe2+. Iron is concentrated in the sieve tube exudate; exudate analysis revealed the presence of other micronutrients. Iron and other micronutrient translocation is discussed.  相似文献   

15.
Summary Iron competitively inhibited Zn absorption by rice (Oryza sativa L. cv. Earlirose) grown in solution culture. The effect was more marked for shoots since Fe had also a competitive effect on Zn translocation from roots to shoots. The chelating agent baptholphenanthrolinesulfonate (BPDS), which has great ability to chelate Fe++, alleviated the inhibitory effect of Fe to a large extent. re]19750516  相似文献   

16.
Metal speciation in xylem and phloem exudates   总被引:5,自引:0,他引:5  
Summary Two computer programs based on simultaneous chemical equilibria were compared for calculation of chemical species in xylem exudates. The first program, CHELATE, was developed to calculate the chemical species in xylem exudates while GEOCHEM was developed to calculate the speciation of natural aquatic systems. The output of the two programs should be similar since they are based on similar calculations. Data input to the programs consisted of concentration data for Ca, Cu, Fe, Mg, Mn, Zn, NH4, PO4, pH and 28 organic ligands reported for xylem exudates from soybean (Glycine max (L.) Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in nutrient solution17. The organic ligands included amino acids and low molecular weight organic acids (e.g., citric and malic). With the exception of Fe, there were large differences between CHELATE and GEOCHEM in the calculated speciation of nearly all metals in the xylem exudates. In general, there was better agreement between the programs for the speciation of alkaline earth metals than for transition metals. Discrepancies between the two programs were attributed to differences in 1) species considered and 2) stability constants. GEOCHEM considered a greater number of possible complexes. In addition, stability constants for some complexes differed by as much as 10 fold between the two programs. When the data base for GEOCHEM and CHELATE were the same, the output from CHELATE and GEOCHEM was almost identical. Thus, computations performed by the two programs are equally valid, but it is essential that the data base used in chemical models be verified before interpreting the output. Average concentration data for Al, Au, Ca, Cu, Fe, K, La, Mg, Mn, Na, Rb, Zn, Cl, MoO4, PO4, SO4, HVO4, pH and 18 organic ligands in phloem exudates from Yucca (Yucca flaccida Haw.) were complied from available literature and analyzed by GEOCHEM. Amino acids were the predominant organic ligand analyzed. Calculations revealed that alkali metals existed almost totally as the free ionic species (≥99%) whereas alkaline earth metals were transported as complexes with organic acids (oxalic, malic, and asparagine). Aluminum and Fe were present as hydroxyl species while <1% of micronutrients were transported as the free ion. Major micronutrient species were Cu-glutamine, Mn-asparagine and Zn-alanine. Information on calculated species present in phloem exudates could be useful to guide studies for isolation of metal-ligand complexes in phloem exudates.  相似文献   

17.
Summary An ion exchange and chelating resin system was developed to buffer the activities of selected free cations and phosphate in hydroponic solutions at concentrations similar to those that occur naturally in soil solutions. Free-ion activities of Cd, Cu, Ni, Zn, Mn, H, Ca, Mg, and K were maintained by ion exchange and chelating resins in a controlled ionic strength system. Iron was controlled by EDDHA and chelating resin, and P by a cation-exchange resin containing adsorbed polynuclear hydroxyaluminum. This mixed-resin hydroponic system was used to establish a range of ionic Cd activities similar to that found in soil solutions of soils amended with sewage sludge. Activities of other nutrients were maintained at realistic soil-solution levels. A metal complexing agent (EDTA) was used to increase total metal concentration in the hydroponic solutions without significantly altering the ionic activities of the metals maintained in solution. This allowed differentiation of the effects of free ions and complexed metals on metal uptake. Concentrations of metal complexes in solution were controlled by the ion activities of the metals maintained and the concentrations and selectivities of the complexing agent. The mixed-resin system supplied sufficient nutrients for the growth of tomato plants (Lycopersicon esculentum, cv. Wisconsin-55) in hydroponic culture. Research supported by the College of Agricultural and Life Sciences, University of Wisonsin-Madison and by United States Environmental Protection Agency through Grant CR807270010.  相似文献   

18.
Several indexes are used to determine the iron nutritional status of plants, but their effectiveness depends either on the plant growth conditions in natural environments or on the assay conditions. This research was conducted to test different indexes of the iron nutritional status of a hydroponic strawberry culture where treatments mainly differed in the source of the iron applied: Fe-EDTA, Fe-EDDHA and Fe-polyflavonoid. Macro and micronutrient concentrations in the nutrient solutions, leaf and vascular tissues were measured. Fe concentration in the nutrient solution during the course of the experiment was considered in relation to the stability of the different chelates. Both Fe concentration and total Fe content of leaves reflected the effect of the treatments; Fe/Mn ratio was significant as a diagnosis index. Other element ratios as P/Fe and K/Ca are not well related with the iron nutrition symptoms observed. Fe2+ concentration measured in leaves was not directly affected by the different chelate treatments.  相似文献   

19.
The effectiveness of four by‐products (biogas digestate, pot ale, rockdust and wood ash) as fertilisers of a perennial ryegrass (Lolium perenne)–red clover (Trifolium pratense) mixture in terms of biomass production, botanical composition and macro‐ and micronutrient concentrations was tested in an outdoor pot trial. This was carried out over two growing seasons using two inherently low‐fertility soils used for forage production. Macro‐ and micronutrients (N, P, K, Ca, Mg, Co, Cu, Mn, Mo and Zn) relevant for crops and livestock were determined in soils and plants. All the by‐products increased overall biomass production and affected nutrient concentrations of the individual plant species to varying degrees. In addition the competitive balance between grass and clover was altered leading to different botanical composition in the different treatments and consequently differences in the nutrient concentrations of the species mixture. Changes were due to the nutrients applied in the by‐products per se and/or to changes in the soil chemistry caused by the by‐products. The results suggest a potential to enhance agricultural productivity through improved production and quality of forage on less fertile land by matching of by‐products and soil properties.  相似文献   

20.
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号