首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
In photosynthetic cells, a large amount of hydrogen peroxide is produced in peroxisomes through photorespiration, which is a metabolic pathway related to photosynthesis. Hydrogen peroxide, a reactive oxygen species, oxidizes peroxisomal proteins and membrane lipids, resulting in a decrease in peroxisomal quality. We demonstrate that the autophagic system is responsible for the elimination of oxidized peroxisomes in plant. We isolated Arabidopsis mutants that accumulated oxidized peroxisomes, which formed large aggregates. We revealed that these mutants were defective in autophagy-related (ATG) genes and that the aggregated peroxisomes were selectively targeted by the autophagic machinery. These findings suggest that autophagy plays an important role in the quality control of peroxisomes by the selective degradation of oxidized peroxisomes. In addition, the results suggest that autophagy is also responsible for the functional transition of glyoxysomes to leaf peroxisomes.  相似文献   

2.
Mammalian peroxisomes are ubiquitous organelles that possess a comprehensive ensemble of more than 50 enzymes. Cells regulate the number of organelles through dynamic interplay between biogenesis and degradation. Under basal conditions, approximately 30% of the peroxisomal pool is turned over daily. Recycling of peroxisomes is necessary for preservation of their functional competence, and correctly functioning autophagic/lysosomal pathways play a central role. In this study, we investigated (1) how lipopolysaccharide (LPS) influences peroxisomal dynamics and functions; and (2) how a superimposed lysosomal dysfunction affects pexophagy and modifies peroxisomal responses to LPS. We demonstrated that a transiently increased autophagic degradation of peroxisomes, pexophagy, followed by increased proliferation of peroxisomes is a default response to endotoxic stress. Impairment of autophagy due to lysosomal dysfunction, however, abolishes the above peroxisomal dynamics and results in accumulation of functionally compromised peroxisomes. These exhibit an imbalance between preserved hydrogen peroxide (H2O2)-generating acyl-CoA oxidase (ACOX) and dysfunctional/inactivated catalase (CAT), which leads to intra-peroxisomal redox disequilibrium. This metabolic-oxidative mismatch causes further worsening of peroxisomal functions, peroxisomal burnout, with the consequence of enhanced oxidative stress and aggravated organ injury.  相似文献   

3.
《Autophagy》2013,9(3):518-519
Peroxisomes are critical organelles housing various, often oxidative, reactions. Pexophagy, the process by which peroxisomes are selectively targeted for destruction via autophagy, is characterized in yeast and mammals but had not been reported in plants. In this article, we describe how the peroxisome-related aberrations of a mutant defective in the LON2 peroxisomal protease are suppressed when autophagy is prevented by mutating any of several key autophagy-related (ATG) genes. Our results reveal that plant peroxisomes can be degraded by selective autophagy and suggest that pexophagy is accelerated when the LON2 protease is disabled.  相似文献   

4.
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.  相似文献   

5.
Peroxisomes are critical organelles housing various, often oxidative, reactions. Pexophagy, the process by which peroxisomes are selectively targeted for destruction via autophagy, is characterized in yeast and mammals but had not been reported in plants. In this article, we describe how the peroxisome-related aberrations of a mutant defective in the LON2 peroxisomal protease are suppressed when autophagy is prevented by mutating any of several key autophagy-related (ATG) genes. Our results reveal that plant peroxisomes can be degraded by selective autophagy and suggest that pexophagy is accelerated when the LON2 protease is disabled.  相似文献   

6.
We demonstrated that in the yeast Hansenula polymorpha peroxisome fission and degradation are coupled processes that are important to remove intra-organellar protein aggregates. Protein aggregates were formed in peroxisomes upon synthesis of a mutant catalase variant. We showed that the introduction of these aggregates in the peroxisomal lumen had physiological disadvantages as it affected growth and caused enhanced levels of reactive oxygen species. Formation of the protein aggregates was followed by asymmetric peroxisome fission to separate the aggregate from the mother organelle. Subsequently, these small, protein aggregate-containing organelles were degraded by autophagy. In line with this observation we showed that the degradation of the protein aggregates was strongly reduced in dnm1 and pex11 cells in which peroxisome fission is reduced. Moreover, this process was dependent on Atg1 and Atg11.  相似文献   

7.
We studied the chronological lifespan of glucose‐grown Saccharomyces cerevisiae in relation to the function of intact peroxisomes. We analyzed four different peroxisome‐deficient (pex) phenotypes. These included Δpex3 cells that lack peroxisomal membranes and in which all peroxisomal proteins are mislocalized together with Δpex6 in which all matrix proteins are mislocalized to the cytosol, whereas membrane proteins are still correctly sorted to peroxisomal ghosts. In addition, we analyzed two mutants in which the peroxisomal location of the β‐oxidation machinery is in part disturbed. We analyzed Δpex7 cells that contain virtually normal peroxisomes, except that all matrix proteins that contain a peroxisomal targeting signal type 2 (PTS2, also including thiolase), are mislocalized to the cytosol. In Δpex5 cells, peroxisomes only contain matrix proteins with a PTS2 in conjunction with all proteins containing a peroxisomal targeting signal type 1 (PTS1, including all β‐oxidation enzymes except thiolase) are mislocalized to the cytosol. We show that intact peroxisomes are an important factor in yeast chronological aging because all pex mutants showed a reduced chronological lifespan. The strongest reduction was observed in Δpex5 cells. Our data indicate that this is related to the complete inactivation of the peroxisomal β‐oxidation pathway in these cells due to the mislocalization of thiolase. Our studies suggest that during chronological aging, peroxisomal β‐oxidation contributes to energy generation by the oxidation of fatty acids that are released by degradation of storage materials and recycled cellular components during carbon starvation conditions.  相似文献   

8.
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. One candidate mechanism is autophagy, a bulk degradation pathway targeting cytoplasmic constituents to the lytic vacuole. We present evidence supporting the autophagy of peroxisomes in Arabidopsis thaliana hypocotyls during seedling growth. Mutants defective in autophagy appeared to accumulate excess peroxisomes in hypocotyl cells. When degradation in the vacuole was pharmacologically compromised, both autophagic bodies and peroxisomal markers were detected in the wild-type vacuole but not in that of the autophagy-incompetent mutants. On the basis of the genetic and cell biological data we obtained, we propose that autophagy is important for the maintenance of peroxisome number and cell remodeling in Arabidopsis hypocotyls.  相似文献   

9.
Atg36     
《Autophagy》2013,9(11):1680-1681
Eukaryotic cells adapt their organelle composition and abundance according to environmental conditions. Analysis of the peroxisomal membrane protein Pex3 has revealed that this protein plays a crucial role in peroxisome maintenance as it is required for peroxisome formation, segregation and breakdown. Although its function in peroxisome formation and segregation was known to involve its recruitment to the peroxisomal membrane of factors specific for these processes, the role of Pex3 in peroxisome breakdown was unclear until our recent identification of Atg36 as a novel Saccharomyces cerevisiae Pex3-interacting protein. Atg36 is recruited to peroxisomes by Pex3 and is required specifically for pexophagy. Atg36 is distinct from Atg30, the pexophagy receptor identified in Pichia pastoris. Atg36 interacts with Atg11 in vivo, and to a lesser extent with Atg8. These latter proteins link autophagic cargo receptors to the core autophagy machinery. Like other autophagic cargo receptors, Atg36 is a suicide receptor and is broken down in the vacuole together with its cargo. Unlike other cargo receptors, the interaction between Atg36 and Atg8 does not seem to be direct. Our recent findings suggest that Atg36 is a novel pexophagy receptor that may target peroxisomes for degradation via a noncanonical mechanism.  相似文献   

10.
ABSTRACT

Hepatic lipid homeostasis is controlled by a coordinated regulation of various metabolic pathways involved in de novo synthesis, uptake, storage, and catabolism of lipids. Disruption of this balance could lead to hepatic steatosis. Peroxisomes play an essential role in lipid metabolism, yet their importance is often overlooked. In a recent study, we demonstrated a role for hepatic peroxisomal β-oxidation in autophagic degradation of lipid droplets. ACOX1 (acyl-Coenzyme A oxidase 1, palmitoyl), the rate-limiting enzyme of peroxisomal β-oxidation, increases with fasting or high-fat diet (HFD). Liver-specific acox1 knockout (acox1-LKO) protects mice from hepatic steatosis induced by starvation or HFD via induction of lipophagy. Mechanistically, we showed that hepatic ACOX1 deficiency decreases the total cytosolic acetyl-CoA levels, which leads to reduced acetylation of RPTOR/RAPTOR, a component of MTORC1, which is a key regulator of macroautophagy/autophagy. These results identify peroxisome-derived acetyl-CoA as a critical metabolic regulator of autophagy that controls hepatic lipid homeostasis.  相似文献   

11.
12.
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.  相似文献   

13.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

14.
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.  相似文献   

15.
K Arai  S Ohkuma  T Matsukawa  S Kato 《FEBS letters》2001,507(2):181-186
When nutrients are depleted from the environment, mammalian cells begin to degrade their own cytosol and organelles. This bulk protein degradation is mediated by autophagy. In this study, peroxisomes in living CHO-K1 cells were visualized by targeting the green fluorescent protein (GFP) tagged with a type 1 peroxisomal targeting signal. The nutrient-starved condition induced a decay of GFP fluorescence in the peroxisomes and autophagic inhibitors such as 3-methyladenine suppressed the decay of GFP fluorescence (13-60% of starvation). By double labeling the nuclear DNA and peroxisomal GFP, the autophagy specifically occurred at the G1 phase of the cell cycle and the autophagic inhibitors suppressed the G1 arrest. The vital stain technique with GFP is a very simple and useful marker to quantitatively estimate or to further study peroxisomal degradation.  相似文献   

16.
Eukaryotic cells adapt their organelle composition and abundance according to environmental conditions. Analysis of the peroxisomal membrane protein Pex3 has revealed that this protein plays a crucial role in peroxisome maintenance as it is required for peroxisome formation, segregation and breakdown. Although its function in peroxisome formation and segregation was known to involve its recruitment to the peroxisomal membrane of factors specific for these processes, the role of Pex3 in peroxisome breakdown was unclear until our recent identification of Atg36 as a novel Saccharomyces cerevisiae Pex3-interacting protein. Atg36 is recruited to peroxisomes by Pex3 and is required specifically for pexophagy. Atg36 is distinct from Atg30, the pexophagy receptor identified in Pichia pastoris. Atg36 interacts with Atg11 in vivo, and to a lesser extent with Atg8. These latter proteins link autophagic cargo receptors to the core autophagy machinery. Like other autophagic cargo receptors, Atg36 is a suicide receptor and is broken down in the vacuole together with its cargo. Unlike other cargo receptors, the interaction between Atg36 and Atg8 does not seem to be direct. Our recent findings suggest that Atg36 is a novel pexophagy receptor that may target peroxisomes for degradation via a noncanonical mechanism.  相似文献   

17.
The n-alkane-assimilating diploid yeast, Candida tropicalis, possesses two acetoacetyl-CoA thiolase (Thiolase I) isozymes encoded by one allele: peroxisomal and cytosolic Thiolase Is encoded by both CT-T1A and CT-T1B. To clarify the function of peroxisomal and cytosolic. Thiolase Is, the site-directed mutation leading Thiolase I ΔC6 without a putative C-terminal peroxisomal targeting signal was introduced on CT-T1A locus in the ct-t1bΔ-null mutant. The C-terminus-truncated Thiolase I was active and solely present in the cytosol. Although the ct-t1aΔ/t1bΔ-null mutants showed mevalonate auxotrophy, the mutants having the C-terminus-truncated Thiolase I did not require mevalonate for growth, as did the strains having cytosolic Thiolase I. These results demonstrated that the presence of Thiolase I in the cytoplasm is indispensable for the sterol synthesis in this yeast. It is of greater interest that peroxisomal and cytosolic Thiolase I isozymes, products of the same genes, play different roles in the respective compartments, although further investigations will be necessary to analyze how to be sorted into peroxisomes and the cytosol.  相似文献   

18.
Here we discuss the mechanisms for the degradation of excess peroxisomes in mammalian hepatocytes which include (a) autophagy, (b) the action of peroxisomal Lon protease and (c) the membrane disrupting effect of 15-lipoxygenase. A recent study using Atg7 conditional-knock-out mice revealed that 70–80% of excess peroxisomes are degraded by the autophagic process. The remaining 20–30% of excess peroxisomes is most probably degraded by the action of peroxisomal Lon protease. Finally, a selective disruption of the peroxisomal membrane has been shown to be mediated by 15-lipoxygenase activity which is followed by diffusion of matrix proteins into the cytoplasm and cytoplasmic proteolysis. Presented at the 50th Anniversary Symposium of the Society for Histochemistry, Interlaken, Switzerland, October 1–4, 2008.  相似文献   

19.
Summary Fusion of a highly purified fraction of rat liver peroxisomal membranes to planar lipid bilayers incorporates large, cation-selective voltage-dependent pores. TheP K/P Cl ratio of these pores, estimated in KCl gradients, is close to 4. The pores display several conductance states and spend most of the time open at voltages near 0 mV, closing at more positive and negative voltages. At voltages near 0 mV the most frequent open state has a conductance of 2.4 nS in 0.3m KCl. At voltages more positive and more negative than 10 mV the most frequent open state displays a conductance of 1.2 nS in 0.3m KCl. With these results pore diameters of 3 and 1.5 nm, respectively, can be estimated. We suggest that these pores might account for the unusually high permeability of peroxisomes to low molecular weight solutes. Fusion also incorporates a perfectly anion-selective, two-open states channel with conductances of 50 and 100 pS in 0.1m KCl.  相似文献   

20.
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号