首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production.1-3 Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012; 11:589-95; PMID:23122286; http://dx.doi.org/10.1016/j.stem.2012.10.005 Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 2012; 21:513-20; PMID:22066548; http://dx.doi.org/10.1089/scd.2011.0526 Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB. Mitochondrial rejuvenation after induced pluripotency. PLoS One 2010; 5:e14095; PMID:21124794; http://dx.doi.org/10.1371/journal.pone.0014095  However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.  相似文献   

3.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

4.
Autophagy can either promote or inhibit cell death in different cellular contexts. In this study, we investigated the role of autophagy in ATG5 knockout (KO) cell line established using CRISPR/Cas9 system. In ATG5 KO cells, RT‐PCR and immunoblot of LC3 confirmed the functional gene knockout. We found that knockout of ATG5 significantly increased proliferation of NIH 3T3 cells. In particular, autophagy deficiency enhanced susceptibility to cellular transformation as determined by an in vitro clonogenic survival assay and a soft agar colony formation assay. We also found that ATG5 KO cells had a greater migration ability as compared to wild‐type (WT) cells. Moreover, ATG5 KO cells were more resistant to treatment with a Src family tyrosine kinase inhibitor (PP2) than WT cells were. Cyto‐ID Green autophagy assay revealed that PP2 failed to induce autophagy in ATG5 KO cells. PP2 treatment decreased the percentage of cells in the S and G2/M phases among WT cells but had no effect on cell cycle distribution of ATG5 KO cells, which showed a high percentage of cells in the S and G2/M phases. Additionally, the proportion of apoptotic cells significantly decreased after treatment of ATG5 KO cells with PP2 in comparison with WT cells. We found that expression levels of p53 were much higher in ATG5 KO cells. The ATG5 KO seems to lead to compensatory upregulation of the p53 protein because of a decreased apoptosis rate. Taken together, our results suggest that autophagy deficiency can lead to malignant cell transformation and resistance to PP2.  相似文献   

5.
Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic -cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM).  相似文献   

6.
Mitochondrial health is maintained by the quality control mechanisms of mitochondrial dynamics (fission and fusion) and mitophagy. Decline of these processes is thought to contribute to aging and neurodegenerative diseases. To investigate the role of mitochondrial quality control in aging on the cellular level, human umbilical vein endothelial cells (HUVEC) were subjected to mitochondria-targeted damage by combining staining of mitochondria and irradiation. This treatment induced a short boost of reactive oxygen species, which resulted in transient fragmentation of mitochondria followed by mitophagy, while mitochondrial dynamics were impaired. Furthermore, targeted mitochondrial damage upregulated autophagy factors LC3B, ATG5 and ATG12. Consequently these proteins were overexpressed in HUVEC as an in vitro aging model, which significantly enhanced the replicative life span up to 150% and the number of population doublings up to 200%, whereas overexpression of LAMP-1 did not alter the life span. Overexpression of LC3B, ATG5 and ATG12 resulted in an improved mitochondrial membrane potential, enhanced ATP production and generated anti-apoptotic effects, while ROS levels remained unchanged and the amount of oxidized proteins increased. Taken together, these data relate LC3B, ATG5 and ATG12 to mitochondrial quality control after oxidative damage, and to cellular longevity.  相似文献   

7.
Adoptive cell transfer (ACT) of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies (1). CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines (2-7). However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases (8-10). However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic (11-13), HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture (14-16). Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.  相似文献   

8.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   

9.
Abstract

The immunophilins are an important group of regulatory molecules in the immune system. FKBP5, expressed throughout mammals and in fish and birds, functions in both physiological and pathogenic pathways, including innate immunity and steroid-based diseases. In this study, we cloned the first porcine FKBP5 from Rongchang pig by the rapid amplification of cDNA ends technique. The full-length cDNA is 4097?bp, with an open reading frame of 1371?bp that codes for a 457-aa protein. Western blotting detected the porcine FKBP5 protein at highest levels in thymus, followed by spleen and lung. Immunohistochemistry detected the porcine FKBP5 protein in lymphocytes and granulocytes of the blood, and flow cytometry identified greater expression in unactivated (vs. activated) T lymphocytes. Finally, the expression level of porcine FKBP5 in the granulocytes was found to decline significantly from the time of birth to one-year-old. These collective data suggest that the newly identified porcine FKBP5 may function in activation of T cells in pig and in innate immunity in the newborn pig in particular.  相似文献   

10.
11.
12.
13.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

14.
15.
目的:探讨哮喘患者外周血调节性T细胞(Treg)以及辅助性T细胞(Th1/Th2)的比例的变化,探讨其在哮喘的临床治疗中的作用。方法:80例哮喘患者(哮喘组)按临床表现分为急性发作期组(54例)和缓解期组(26例),同时选择50例健康体检者。应用流式细胞仪检测上述各组外周血CD4+CD25+Foxp3+Treg、CD4+IFN-γ+Th1和CD4+IL-4+Th2细胞水平,并进行统计学分析。结果:哮喘组CD4+CD25+Foxp3+Treg水平亦明显低于正常对照组(P〈0.05。其中急性发作期组Treg水平明显低于缓解期组和正常对照组(P〈0.05)。而哮喘组Th1/Th2比值显著低于对照组(P〈0.05),且在哮喘急性发作组中Th1/Th2比值显著低于缓解期组和正常对照组(P〈0.05)。结论:提示Treg和Th在哮喘的发生和发展中起着重要的作用。  相似文献   

16.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:17,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

17.
为从细胞水平研究小鼠乳腺表达抗PD-1抗体对转基因鼠脾脏T细胞表面抗原蛋白、细胞因子表达、脾脏CD4+T细胞增殖以及增殖相关通路的影响,将8周龄未经历过怀孕的和18周龄经历过哺乳的表达抗人PD-1抗体的转基因小鼠分成两组,每组以转基因阴性鼠为对照,提取脾脏淋巴细胞,检测脾脏淋巴细胞的变化。与转基因阴性小鼠相比,乳腺表达抗PD-1抗体的转基因小鼠的免疫系统中的脾脏T细胞的效应T细胞比例上升,Treg细胞比例下降,CD4+T细胞表达的IFN-γ、IL-17以及IL-2有不同程度的增加。IL-4、IL-10以及TGF-β都没有发生变化。与T细胞刺激相关的一些细胞表面的蛋白分子也没有引起变化。转基因阳性鼠和转基因阴性鼠中T细胞增殖没有显著性差异,转基因阳性鼠中PI3K/Akt/mTOR和Ras/MEK/ERK这两条通路上的磷酸化蛋白只有部分表达上调,整个通路没有完全上调。结果表明,转基因小鼠作为表达抗PD-1抗体这类免疫系统相关单克隆抗体的宿主是可行的。  相似文献   

18.
目的:探讨哮喘患者外周血调节性T细胞(Treg)以及辅助性T细胞(Th1/Th2)的比例的变化,探讨其在哮喘的临床治疗中的作用。方法:80例哮喘患者(哮喘组)按临床表现分为急性发作期组(54例)和缓解期组(26例),同时选择50例健康体检者。应用流式细胞仪检测上述各组外周血CD4+CD25+Foxp3+Treg、CD4+IFN-γ+Th1和CD4+IL-4+Th2细胞水平,并进行统计学分析。结果:哮喘组CD4+CD25+Foxp3+Treg水平亦明显低于正常对照组(P<0.05。其中急性发作期组Treg水平明显低于缓解期组和正常对照组(P<0.05)。而哮喘组Th1/Th2比值显著低于对照组(P<0.05),且在哮喘急性发作组中Th1/Th2比值显著低于缓解期组和正常对照组(P<0.05)。结论:提示Treg和Th在哮喘的发生和发展中起着重要的作用。  相似文献   

19.
T and B mouse spleen lymphocytes were separated by density gradient electrophoresis on the basis of their surface charge. In all strains examined, the T lymphocytes were found in the high mobility fractions and the B in the low. The T and B cells were separated completely in most fractions, with some overlapping in the middle. Significant differences were found in the electrophoretic distribution profiles between the strains: C57BL/6j, C57BL/10j, (BALB/cXC57BL/6j)F1, and all the following: B6·C-H-2d/cBy (congenic to C57BL/6j), BALB/c, CBA/H/T6j, C57BL/10Sn, and C3H. The C57BL/6j and the (BALB/cXC57BL/6j)F1 cells appear more heterogeneous as far as electrophoretic mobility is concerned. Almost all the other strains give two major peaks. Moreover, the high mobility areas are less populated in the C57BL/6j and the (BALB/cXC57BL/6j)F1 animals than in all the others. The above differences were found consistently when cells prepared by different methods were electrophoresed. It is concluded that the surface charge of lymphocytes may be genetically determined. Possible dependency on the H-2 complex or non-H-2 areas is discussed.  相似文献   

20.
Peripheral blood lymphocytes displayed a plurality of sues and colors when exposed first to a methanolic solution of C.I. basic blue 141, then to an aqueous alkaline solution of the Same dye and Msed in a neutral HEPES buffer containing trace amounts of various salts. As confirmed with purified lymphocyte subpopula-tions obtained with a cell sorter, T helper cells (CD4) were small and their nuclei and cytoplasm stained deep blue. T cytotoxic/suppressor cells (CD 8) were larger than T helper cells, their nuclei stained pale green or blue green and their cytoplasm contained a cluster of magenta colored granules. From start to finish, the stain takes 15 min to perform. Used in the manner described, basic blue 141 holds promise as a rapid means of identifying and differentiating CD4 and CD8 cells under the ordinary light microscope without using monoclonal antibodies or fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号