首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Autophagy》2013,9(12):1415-1423
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

3.
In neurodegenerative diseases like Alzheimer's disease (AD), tau is hyperphosphorylated and forms aggregates and neurofibrillary tangles in affected neurons. Autophagy is critical to clear the aggregates of disease‐associated proteins and is often altered in patients and animal models of AD. Because mechanistic target of rapamycin (mTOR) negatively regulates autophagy and is hyperactive in the brains of patients with AD, mTOR is an attractive therapeutic target for AD. However, pharmacological strategies to increase autophagy by targeting mTOR inhibition cause various side effects. Therefore, autophagy activation mediated by non‐mTOR pathways is a new option for autophagy‐based AD therapy. Here, we report that pimozide activates autophagy to rescue tau pathology in an AD model. Pimozide increased autophagic flux through the activation of the AMPK‐Unc‐51 like autophagy activating kinase 1 (ULK1) axis, but not of mTOR, in neuronal cells, and this function was independent of dopamine D2 receptor inhibition. Pimozide reduced levels of abnormally phosphorylated tau aggregates in neuronal cells. Further, daily intraperitoneal (i.p.) treatment of pimozide led to a recovery from memory deficits of TauC3 mice expressing a caspase‐cleaved form of tau. In the brains of these mice, we found increased phosphorylation of AMPK1 and ULK1, and reduced levels of the soluble oligomers and NP40‐insoluble aggregates of abnormally phosphorylated tau. Together, these results suggest that pimozide rescues memory impairments in TauC3 mice and reduces tau aggregates by increasing autophagic flux through the mTOR‐independent AMPK‐ULK1 axis.  相似文献   

4.
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

5.
The present study examined the effects of chronic activation of 5'-AMP-activated protein kinase (AMPK) on the oxidative capacity and myosin heavy chain (MHC) based fibre phenotype of rodent fast- and slow-twitch muscles. Sprague-Dawley rats received daily injections for 4 weeks of the known AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) or vehicle (control). The AICAR group displayed increases in hexokinase-II (HXK-II) activity, expression, and phosphorylation in fast-twitch muscles (P<0.001) but not in the slow-twitch soleus (SOL). In the AICAR group, citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35) were elevated 1.6- and 2.1-fold (P<0.05), respectively, in fast-twitch medial gastrocnemius (MG), and by 1.2- and 1.4-fold (P<0.05) in the slower-twitch plantaris (PLANT). No changes were observed in the slow-twitch SOL. In contrast, the activity of glyceraldehyde phosphate dehydrogenase (EC 1.2.1.12) remained unchanged in all muscles. AICAR treatment did not alter the MHC-based fibre type composition in fast- or slow-twitch muscles, as determined by immunohistochemical and electrophoretic analytical methods or by RT-PCR. We conclude that chronic activation of AMPK mimics the metabolic changes associated with chronic exercise training (increased oxidative capacity) in the fast-twitch MG and PLANT, but does not coordinately alter MHC isoform content or mRNA expression.  相似文献   

6.
The autophagy–lysosome system is essential for muscle protein synthesis and degradation equilibrium, and its dysfunction has been linked to various muscle disorders. It has been reported that a diverse collection of extracellular matrix constituents, including decorin, collagen VI, laminin α2, endorepellin, and endostatin, can modulate autophagic signaling pathways. However, the association between autophagy and perlecan in muscle homeostasis remains unclear. The mechanical unloading of perlecan-deficient soleus muscles resulted in significantly decreased wet weights and cross-section fiber area compared with those of control mice. We found that perlecan deficiency in slow-twitch soleus muscles enhanced autophagic activity. This was accompanied by a decrease in autophagic substrates, such as p62, and an increase in LC3II levels. Furthermore, perlecan deficiency caused a reduction in the phosphorylation levels of p70S6k and Akt and increased the phosphorylation of AMPKα. Our findings suggested that perlecan inhibits the autophagic process through the activation of the mTORC1 pathway. This autophagic response may be a novel target for enhancing the efficacy of skeletal muscle atrophy treatment.  相似文献   

7.
Aimin Xu  Gary Sweeney 《Autophagy》2015,11(4):723-724
Autophagy can dictate changes in cell metabolism via numerous mechanisms. ADIPOQ/adiponectin has been extensively characterized to have beneficial metabolic effects, both via INS/insulin-sensitizing and INS-independent actions. Our recent work examined the regulation of skeletal muscle autophagy by ADIPOQ and the functional significance. We showed that ADIPOQ directly stimulates autophagic flux in cultured skeletal muscle cells via an AMPK-dependent signaling pathway leading to phosphorylation of ULK1 (Ser555). Pharmacological inhibition of autophagy or overexpressing an inactive mutant of ATG5 to create an autophagy-deficient cell model reduces INS sensitivity. A high-fat diet (HFD) does not induce skeletal muscle autophagy in Adipoq knockout (Ad-KO) mice, whereas it does in wild-type (WT) mice, although ADIPOQ replenishment in Ad-KO mice stimulates autophagy. Changes in skeletal muscle autophagy correlate well with peripheral INS sensitivity and glucose metabolism. Thus, ADIPOQ stimulates autophagic flux in skeletal muscle, which likely represents one important mechanism mediating multiple favorable metabolic effects.  相似文献   

8.
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has been shown to have anti-inflammatory, anti-cancer, anti-steatotic effects on the liver. Autophagy also mediates similar effects; however, it is not currently known whether EGCG can regulate hepatic autophagy. Here, we show that EGCG increases hepatic autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in hepatic cells and in vivo. EGCG also increases phosphorylation of AMPK, one of the major regulators of autophagy. Importantly, siRNA knockdown of AMPK abrogated autophagy induced by EGCG. Interestingly, we observed lipid droplet within autophagosomes and autolysosomes and increased lipid clearance by EGCG, suggesting it promotes lipid metabolism by increasing autophagy. In mice fed with high-fat/western style diet (HFW; 60% energy as fat, reduced levels of calcium, vitamin D3, choline, folate, and fiber), EGCG treatment reduces hepatosteatosis and concomitantly increases autophagy. In summary, we have used genetic and pharmacological approaches to demonstrate EGCG induction of hepatic autophagy, and this may contribute to its beneficial effects in reducing hepatosteatosis and potentially some other pathological liver conditions.  相似文献   

9.
Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy.  相似文献   

10.
Cardiomyocytes autophagy is essential for maintaining cardiac function. Our previous studies have found that β1-adrenergic receptor autoantibody (β1-AA) induced the decreased myocardial autophagic flux, which resulted in cardiomyocyte death and cardiac dysfunction. And other studies demonstrated that β1-AA induced the decrease of AMPK phosphorylation, the key hub of autophagy pathway, while adiponectin up-regulated autophagic flux mediated by AMPK. However, it is not clear whether adiponectin improves the inhibition of myocardial autophagic flux induced by β1-AA by up-regulating the level of AMPK phosphorylation. In this study, it has been confirmed that β1-AA induced the decrease of AMPK phosphorylation level in both vivo and vitro. Moreover, pretreatment of cardiomyocytes with AMPK inhibitor Compound C could further reduce the autophagic flux induced by β1-AA. Adiponectin deficiency could aggravate the decrease of myocardial AMPK phosphorylation level, autophagic flux and cardiac function induced by β1-AA. Further, exogenous adiponectin could reverse the decline of AMPK phosphorylation level and autophagic flux induced by β1-AA and even reduce cardiomyocyte death. While pretreated with the Compound C, the adiponectin treatment did not improve the decreased autophagosome formation, but still improved the decreased autophagosome clearance induced by β1-AA in cardiomyocytes. This study is the first time to confirm that β1-AA could inhibit myocardial autophagic flux by down-regulating AMPK phosphorylation level. Adiponectin could improve the inhibition of myocardial autophagic flux induced by β1-AA partly dependent on AMPK, so as to provide an experimental basis for the treatment of patients with β1-AA-positive cardiac dysfunction.  相似文献   

11.
Androgens promote anabolism in skeletal muscle; however, effects on subsequent muscle function are less well defined because of a lack of reliable experimental models. We established a rigorous model of androgen withdrawal and administration in male mice and assessed androgen regulation of muscle mass, structure, and function. Adult C57Bl/6J male mice were orchidectomized (Orx) or sham-operated (Sham) and received 10 wk of continuous testosterone (T) or control treatment (C) via intraperitoneal implants. Mass, fiber cross-sectional area (CSA), and in vitro contractile function were assessed for fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles. After 10 wk, Orx+C mice had reduced body weight gain (P < 0.05), seminal vesicle mass (P < 0.01), and levator ani muscle mass (P < 0.001) compared with Sham+C mice, and these effects were prevented with testosterone treatment. Orx+T mice had greater EDL (P < 0.01) and SOL (P < 0.01) muscle mass compared with Orx+C mice; however, median fiber CSA was not significantly altered in these muscles. EDL and SOL muscle force was greater in Sham+T compared with Orx+C mice (P < 0.05) in proportion to muscle mass. Unexpectedly, Orx+T mice had increased fatigue resistance of SOL muscle compared with Orx+C mice (P < 0.001). We used a rigorous model of androgen withdrawal and administration in male mice to demonstrate an essential role of androgens in the maintenance of muscle mass and force. In addition, we showed that testosterone treatment increases resistance to fatigue of slow- but not fast-twitch muscle.  相似文献   

12.
Autophagy is a lysosomal pathway involved in the turnover of cellular macromolecules and organelles. Starvation and various other stresses increase autophagic activity above the low basal levels observed in unstressed cells, where it is kept down by mammalian target of rapamycin complex 1 (mTORC1). In starved cells, LKB1 activates AMP-activated protein kinase (AMPK) that inhibits mTORC1 activity via a pathway involving tuberous sclerosis complex 1 and 2 (TSC1/2) and its substrate Rheb. The present study suggests hat AMPK inhibits mTORC1 and autophagy also in nonstarved cells. Various Ca(2+) mobilizing agents (vitamin D compounds, thapsigargin, ATP and ionomycin) activate MPK via activation of Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta), and his pathway is required for Ca(2+)-induced autophagy. Thus, we propose that an increase in free cytosolic Ca(2+) ([Ca(2+)](c)) induces autophagy via the CaMKK/beta-AMPK-TSC1/2-Rheb-mTORC1 signaling pathway and that AMPK is a more general regulator of autophagy than previously expected.  相似文献   

13.
14.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

15.
Autophagy is a degradation process, wherein long-lived proteins, damaged organelles, and protein aggregates are degraded to maintain cellular homeostasis. Upon starvation, 5′-AMP-activated protein kinase (AMPK) initiates autophagy. We show that ampkα cells exhibit 50% reduction in pinocytosis and display defective phagocytosis. Re-expression of AMPKα in ampkα cells co-localizes with red fluorescence protein-tagged bacteria. The ampkα cells show reduced cell survival and autophagic flux under basal and starvation conditions. Co-immunoprecipitation studies show conservation of the AMPK–ATG1 axis in basal autophagy. Computational analyses suggest that the N-terminal region of DdATG1 is amenable for interaction with AMPK. Furthermore, β-actin was found to be a novel interacting partner of AMPK, attributed to the alteration in macropinocytosis and phagocytosis in the absence of AMPK. Additionally, ampkα cells exhibit enhanced poly-ubiquitinated protein levels and allied large ubiquitin-positive protein aggregates. Our findings suggest that AMPK provides links among pinocytosis, phagocytosis, autophagy, and is a requisite for basal autophagy in Dictyostelium.  相似文献   

16.
《Autophagy》2013,9(4):381-383
Autophagy is a lysosomal pathway involved in the turnover of cellular macromolecules and organelles. Starvation and various other stresses increase autophagic activity above the low basal levels observed in unstressed cells, where it is kept down by mammalian target of rapamycin complex 1 (mTORC1). In starved cells, LKB1 activates AMP-activated protein kinase (AMPK) that inhibits mTORC1 activity via a pathway involving tuberous sclerosis complex 1 and 2 (TSC1/2) and its substrate Rheb. The present study suggests that AMPK inhibits mTORC1 and autophagy also in non-starved cells. Various Ca2+ mobilizing agents (vitamin D compounds, thapsigargin, ATP and ionomycin) activate AMPK via activation of Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β), and this pathway is required for Ca2+-induced mTORC1 inhibition and autophagy. Thus, we propose that an increase in free cytosolic Ca2+ ([Ca2+]c) induces autophagy via the CaMKK/β-AMPK-TSC1/2-Rheb-mTORC1 signaling pathway and that AMPK is a more general regulator of autophagy than previously expected.

Addendum to:

Control of Macroautophagy by Calcium, Calmodulin-Dependent Kinase Kinase-β and Bcl-2

M. Høyer-Hansen, L. Bastholm, P. Szyniarowski, M. Campanella, G. Szabadkai, T. Farkas, K. Bianchi, N. Fehrenbacher, F. Elling, R. Rizzuto, I.S. Mathiasen and M. Jäättelä

Mol Cell 2007; 25:193-205  相似文献   

17.
Cardiomyocytes autophagy is essential for maintaining cardiac function. Our previous studies have found that β1‐adrenergic receptor autoantibody (β1‐AA) induced the decreased myocardial autophagic flux, which resulted in cardiomyocyte death and cardiac dysfunction. And other studies demonstrated that β1‐AA induced the decrease of AMPK phosphorylation, the key hub of autophagy pathway, while adiponectin up‐regulated autophagic flux mediated by AMPK. However, it is not clear whether adiponectin improves the inhibition of myocardial autophagic flux induced by β1‐AA by up‐regulating the level of AMPK phosphorylation. In this study, it has been confirmed that β1‐AA induced the decrease of AMPK phosphorylation level in both vivo and vitro. Moreover, pretreatment of cardiomyocytes with AMPK inhibitor Compound C could further reduce the autophagic flux induced by β1‐AA. Adiponectin deficiency could aggravate the decrease of myocardial AMPK phosphorylation level, autophagic flux and cardiac function induced by β1‐AA. Further, exogenous adiponectin could reverse the decline of AMPK phosphorylation level and autophagic flux induced by β1‐AA and even reduce cardiomyocyte death. While pretreated with the Compound C, the adiponectin treatment did not improve the decreased autophagosome formation, but still improved the decreased autophagosome clearance induced by β1‐AA in cardiomyocytes. This study is the first time to confirm that β1‐AA could inhibit myocardial autophagic flux by down‐regulating AMPK phosphorylation level. Adiponectin could improve the inhibition of myocardial autophagic flux induced by β1‐AA partly dependent on AMPK, so as to provide an experimental basis for the treatment of patients with β1‐AA‐positive cardiac dysfunction.  相似文献   

18.
《Autophagy》2013,9(12):1405-1406
Skeletal muscle fibers of collagen VI null (Col6a1?/?) mice show signs of degeneration due to a block in autophagy, leading to the accumulation of damaged mitochondria and excessive apoptosis. Attempts to induce autophagic flux by subjecting these mutant mice to long-term or shorter bursts of physical activity are unsuccessful (see Grumati, et al., pp. 1415–23). In normal mice, the induction of autophagy in the skeletal muscles post-exercise is able to prevent the accumulation of damaged organelles and maintain cellular homeostasis. Thus, these studies provide an important connection between autophagy and exercise physiology.  相似文献   

19.
20.
Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号