ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation. 相似文献
The lysosome is a key subcellular organelle that receives and degrades macromolecules from endocytic, secretory and autophagic pathways. Lysosomal function is thus critical for an efficient autophagic process. However, the molecular mechanisms mediating lysosomal function upon autophagic induction are largely unknown. Our laboratory recently discovered that upon autophagy activation, the lysosome is activated, and this functional activation is dependent on MTORC1 suppression, suggesting that MTORC1 exerts a suppressive effect on lysosomal function. Therefore, data from our study demonstrate that MTORC1 exerts a dual inhibitory effect on autophagy, blocking autophagy not only at the initiation stage via suppression of the ULK1 complex, but also at the degradation stage via inhibition of lysosomal function. We think that understanding the negative regulatory effect of MTORC1 on lysosomal function expands the functional scope of MTORC1 in autophagy regulation, and offers new clues for developing novel interventional strategies in autophagy- and lysosome-related diseases. 相似文献
A-type lamins, generated from the LMNA gene by differential splicing, are type V intermediate filament proteins that polymerize to form part of the nuclear lamina, and are of considerable medical interest because missense mutations in LMNA give rise to a wide range of dystrophic and progeroid syndromes. Among these are dilated cardiomyopathy and two forms of muscular dystrophy (limb-girdle and Emery-Dreifuss), which are modeled in lmna?/? mice and mice engineered to express human disease mutations. Our recent study demonstrates that cardiac and skeletal muscle pathology in lmna?/? mice can be attributed to elevated MTORC1 signaling leading to impairment of autophagic flux. An accompanying paper from another laboratory shows similar impairments in mice engineered to express the LMNA H222P associated with dilated cardiomyopathy in humans and also in left ventricular tissue from human subjects. MTORC1 inhibition with rapalogs restores autophagic flux and improves cardiac function in both mouse models, and extends survival in the lmna?/? mice. These findings elaborate a potential treatment option for dilated cardiomyopathy and muscular dystrophy associated with LMNA mutation and supplement growing evidence linking impaired autophagy to human disease. 相似文献
ULK1 (unc51-like autophagy activating kinase 1) is a serine/threonine kinase that plays a key role in regulating macroautophagy/autophagy induction in response to amino acid starvation. Despite the recent progress in understanding ULK1 functions, the molecular mechanism by which ULK1 regulates the induction of autophagy remains elusive. In this study, we determined that ULK1 phosphorylates Ser30 of BECN1 (Beclin 1) in association with ATG14 (autophagy-related 14) but not with UVRAG (UV radiation resistance associated). The Ser30 phosphorylation was induced by deprivation of amino acids or treatments with Torin 1 or rapamycin, the conditions that inhibit MTORC1 (mechanistic target of rapamycin complex 1), and requires ATG13 and RB1CC1 (RB1 inducible coiled-coil 1), proteins that interact with ULK1. Hypoxia or glutamine deprivation, which inhibit MTORC1, was also able to increase the phosphorylation in a manner dependent upon ULK1 and ULK2. Blocking the BECN1 phosphorylation by replacing Ser30 with alanine suppressed the amino acid starvation-induced activation of the ATG14-containing PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) kinase, and reduced autophagy flux and the formation of phagophores and autophagosomes. The Ser30-to-Ala mutation did not affect the ULK1-mediated phosphorylations of BECN1 Ser15 or ATG14 Ser29, indicating that the BECN1 Ser30 phosphorylation might regulate autophagy independently of those 2 sites. Taken together, these results demonstrate that BECN1 Ser30 is a ULK1 target site whose phosphorylation activates the ATG14-containing PIK3C3 complex and stimulates autophagosome formation in response to amino acid starvation, hypoxia, and MTORC1 inhibition. 相似文献
Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading. 相似文献
Autophagy begins with the formation of autophagosomes, a process that depends on the activity of the serine/threonine kinase ULK1 (hATG1). Although earlier studies indicated that ULK1 activity is regulated by dynamic polyubiquitination, the deubiquitinase involved in the regulation of ULK1 remained unknown. In this study, we demonstrate that ubiquitin‐specific protease 20 (USP20) acts as a positive regulator of autophagy initiation through stabilizing ULK1. At basal state, USP20 binds to and stabilizes ULK1 by removing the ubiquitin moiety, thereby interfering with the lysosomal degradation of ULK1. The stabilization of basal ULK1 protein levels is required for the initiation of starvation‐induced autophagy, since the depletion of USP20 by RNA interference inhibits LC3 puncta formation, a marker of autophagic flux. At later stages of autophagy, USP20 dissociates from ULK1, resulting in enhanced ULK1 degradation and apoptosis. Taken together, our findings provide the first evidence that USP20 plays a crucial role in autophagy initiation by maintaining the basal expression level of ULK1. 相似文献
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction. 相似文献
Autophagy represents an intracellular degradation process which is involved in both regular cell homeostasis and disease settings. In recent years, the molecular machinery governing this process has been elucidated. The ULK1 kinase complex consisting of the serine/threonine protein kinase ULK1 and the adapter proteins ATG13, RB1CC1, and ATG101, is centrally involved in the regulation of autophagy initiation. This complex is in turn regulated by the activity of different nutrient- or energy-sensing kinases, including MTOR, AMPK, and AKT. However, next to phosphorylation processes it has been suggested that ubiquitination of ULK1 positively influences ULK1 function. Here we report that the inhibition of deubiquitinases by the compound WP1130 leads to increased ULK1 ubiquitination, the transfer of ULK1 to aggresomes, and the inhibition of ULK1 activity. Additionally, WP1130 can block the autophagic flux. Thus, treatment with WP1130 might represent an efficient tool to inhibit the autophagy-initiating ULK1 complex and autophagy. 相似文献
Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia. 相似文献
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase. 相似文献
Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1. 相似文献
Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1. 相似文献
AbstractThe molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. 相似文献
NRBF2/Atg38 has been identified as the fifth subunit of the macroautophagic/autophagic class III phosphatidylinositol 3-kinase (PtdIns3K) complex, along with ATG14/Barkor, BECN1/Vps30, PIK3R4/p150/Vps15 and PIK3C3/Vps34. However, its functional mechanism and regulation are not fully understood. Here, we report that NRBF2 is a fine tuning regulator of PtdIns3K controlled by phosphorylation. Human NRBF2 is phosphorylated by MTORC1 at S113 and S120. Upon nutrient starvation or MTORC1 inhibition, NRBF2 phosphorylation is diminished. Phosphorylated NRBF2 preferentially interacts with PIK3C3/PIK3R4. Suppression of NRBF2 phosphorylation by MTORC1 inhibition alters its binding preference from PIK3C3/PIK3R4 to ATG14/BECN1, leading to increased autophagic PtdIns3K complex assembly, as well as enhancement of ULK1 protein complex association. Consequently, NRBF2 in its unphosphorylated form promotes PtdIns3K lipid kinase activity and autophagy flux, whereas its phosphorylated form blocks them. This study reveals NRBF2 as a critical molecular switch of PtdIns3K and autophagy activation, and its on/off state is precisely controlled by MTORC1 through phosphorylation. 相似文献
Poliovirus (PV), like many positive-strand RNA viruses, subverts the macroautophagy/autophagy pathway to promote its own replication. Here, we investigate whether the virus uses the canonical autophagic signaling complex, consisting of the ULK1/2 kinases, ATG13, RB1CC1, and ATG101, to activate autophagy. We find that the virus sends autophagic signals independent of the ULK1 complex, and that the members of the autophagic complex are not required for normal levels of viral replication. We also show that the SQSTM1/p62 receptor protein is not degraded in a conventional manner during infection, but is likely cleaved in a manner similar to that shown for coxsackievirus B3. This means that SQSTM1, normally used to monitor autophagic degradation, cannot be used to accurately monitor degradation during poliovirus infection. In fact, autophagic degradation may be affected by the loss of SQSTM1 at the same time as autophagic signals are being sent. Finally, we demonstrate that ULK1 and ULK2 protein levels are greatly reduced during PV infection, and ATG13, RB1CC1, and ATG101 protein levels are reduced as well. Surprisingly, autophagic signaling appears to increase as ULK1 levels decrease. Overexpression of wild-type or dominant-negative ULK1 constructs does not affect virus replication, indicating that ULK1 degradation may be a side effect of the ULK1-independent signaling mechanism used by PV, inducing complex instability. This demonstration of ULK1-independent autophagic signaling is novel and leads to a model by which the virus is signaling to generate autophagosomes downstream of ULK1, while at the same time, cleaving cargo receptors, which may affect cargo loading and autophagic degradative flux. Our data suggest that PV has a finely-tuned relationship with the autophagic machinery, generating autophagosomes without using the primary autophagy signaling pathway.
Abbreviations: ACTB - actin beta; ATG13 - autophagy related 13; ATG14 - autophagy related 14; ATG101 - autophagy related 101; BECN1 - beclin 1; CVB3 - coxsackievirus B3; DMV - double-membraned vesicles; EM - electron microscopy; EMCV - encephalomyocarditis virus; EV-71 - enterovirus 71; FMDV - foot and mouth disease virus; GFP - green fluorescent protein; MAP1LC3B/LC3B - microtubule associated protein 1 light chain 3 beta; MOI - multiplicity of infection; MTOR - mechanistic target of rapamycin kinase; PIK3C3 - phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA2 - protein kinase AMP-activated catalytic subunit alpha 2; PSMG1 - proteasome assembly chaperone 1; PSMG2 - proteasome assembly chaperone 2PV - poliovirus; RB1CC1 - RB1 inducible coiled-coil 1; SQSTM1 - sequestosome 1; ULK1 - unc-51 like autophagy activating kinase 1; ULK2 - unc-51 like autophagy activating kinase 2; WIPI1 - WD repeat domain, phosphoinositide interacting 1 相似文献