首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy has been implicated in a range of disorders and hence is of major interest. However, imaging autophagy in real time has been hampered by lack of suitable markers. We have compared the potential of monodansylcadaverine, widely used as an autophagosomal marker, and the Atg8 homologue LC3, to follow autophagy by fluorescence microscopy whilst labelling late endosomes and lysosomes simultaneously using EGFP-CD63. Monodansylcadaverine labelled only acidic CD63-positive compartments in response to a range of autophagic inducers in various live or post-fixed cells, staining being identical in atg5(+/+) and atg5(-/-) MEFs in which autophagosome formation is disabled. Monodansylcadaverine staining was essentially indistinguishable from that of LysoTracker Red, LAMP-1 or LAMP-2. In contrast, 60-90% of EGFP-LC3-positive punctate organelles did not colocalise with LAMP-1/LAMP-2/CD63 and were monodansylcadaverine-negative while EGFP-LC3 puncta that did colocalise with LAMP-1/LAMP-2/CD63 were also monodansylcadaverine-positive. Hence monodansylcadaverine is no different from other markers of acidic compartments and it cannot be used to follow autophagosome formation. In contrast, fusion of mRFP-LC3-labelled autophagosomes with EGFP-CD63-positive endosomes and lysosomes and sequestration of dsRed-labelled mitochondria by EGFP-LC3- and EGFP-CD63-positive compartments could be visualized in real time. Moreover, transition of EGFP-LC3-I (45 kDa) to EGFP-LC3-II (43 kDa)-traced by immunoblotting and verified by [(3)H]ethanolamine labelling-revealed novel insights into the dynamics of autophagosome homeostasis, including the rapid activation of autophagy by the apoptotic inducer staurosporine prior to apoptosis proper. Use of fluorescent LC3 and a counter-fluorescent endosomal/lysosomal protein clearly allows the entire autophagic process to be followed by live cell imaging with high fidelity.  相似文献   

2.
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.  相似文献   

3.
《Autophagy》2013,9(5):452-460
During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric Red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.  相似文献   

4.
Macroautophagy/autophagy is a membrane trafficking and intracellular degradation process involving the formation of double-membrane autophagosomes and their ultimate fusion with lysosomes. Much is yet to be learned about the regulation of this process, especially at the level of the membranes and lipids involved. We have recently found that the PX domain protein HS1BP3 (HCLS1 binding protein 3) is a negative regulator of autophagosome formation. HS1BP3 depletion increases the formation of LC3-positive autophagosomes both in human cells and zebrafish. HS1BP3 localizes to ATG16L1- and ATG9-positive autophagosome precursors deriving from recycling endosomes, which appear to fuse with LC3-positive phagophores. The HS1BP3 PX domain interacts with phosphatidic acid (PA) and 3’-phosphorylated phosphoinositides. When HS1BP3 is depleted, the total cellular PA content is upregulated stemming from increased activity of the PA-producing enzyme PLD (phospholipase D) and increased localization of PLD1 to ATG16L1-positive membranes. We propose that HS1BP3 negatively regulates autophagy by decreasing the PA content of the ATG16L1-positive autophagosome precursor membranes through inhibition of PLD1 activity and localization.  相似文献   

5.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment.  相似文献   

6.
Macroautophagy allows for bulk degradation of cytosolic components in lysosomes. Overexpression of GFP/RFP-LC3/GABARAP is commonly used to monitor autophagosomes, a hallmark of autophagy, despite artifacts related to their overexpression. Here, we developed new sensors that detect endogenous LC3/GABARAP proteins at the autophagosome using an LC3-interacting region (LIR) and a short hydrophobic domain (HyD). Among HyD-LIR-GFP sensors harboring LIR motifs of 34 known LC3-binding proteins, HyD-LIR(TP)-GFP using the LIR motif from TP53INP2 allowed detection of all LC3/GABARAPs-positive autophagosomes. However, HyD-LIR(TP)-GFP preferentially localized to GABARAP/GABARAPL1-positive autophagosomes in a LIR-dependent manner. In contrast, HyD-LIR(Fy)-GFP using the LIR motif from FYCO1 specifically detected LC3A/B-positive autophagosomes. HyD-LIR(TP)-GFP and HyD-LIR(Fy)-GFP efficiently localized to autophagosomes in the presence of endogenous LC3/GABARAP levels and without affecting autophagic flux. Both sensors also efficiently localized to MitoTracker-positive damaged mitochondria upon mitophagy induction. HyD-LIR(TP)-GFP allowed live-imaging of dynamic autophagosomes upon autophagy induction. These novel autophagosome sensors can thus be widely used in autophagy research.  相似文献   

7.
The process of autophagy involves the formation of autophagosomes, double-membrane structures that encapsulate cytosol. Microtubule-associated protein light chain 3 (LC3) was the first protein shown to specifically label autophagosomal membranes in mammalian cells, and subsequently EGFP-LC3 has become one of the most widely utilized reporters of autophagy. Although LC3 is currently thought to function primarily in the cytosol, the site of autophagosome formation, EGFP-LC3 often appears to be enriched in the nucleoplasm relative to the cytoplasm in published fluorescence images. However, the nuclear pool of EGFP-LC3 has not been specifically studied in previous reports, and mechanisms by which LC3 shuttles between the cytoplasm and nucleoplasm are currently unknown. In this study, we therefore investigated the regulation of the nucleo-cytoplasmic distribution of EGFP-LC3 in living cells. By quantitative fluorescence microscopy analysis, we demonstrate that soluble EGFP-LC3 is indeed enriched in the nucleus relative to the cytoplasm in two commonly studied cell lines, COS-7 and HeLa. Although LC3 contains a putative nuclear export signal (NES), inhibition of active nuclear export or mutation of the NES had no effect on the nucleo-cytoplasmic distribution of EGFP-LC3. Furthermore, FRAP analysis indicates that EGFP-LC3 undergoes limited passive nucleo-cytoplasmic transport under steady state conditions, and that the diffusional mobility of EGFP-LC3 was substantially slower in the nucleus and cytoplasm than predicted for a freely diffusing monomer. Induction of autophagy led to a visible decrease in levels of soluble EGFP-LC3 relative to autophagosome-bound protein, but had only modest effects on the nucleo-cytoplasmic ratio or diffusional mobility of the remaining soluble pools of EGFP-LC3. We conclude that the enrichment of soluble EGFP-LC3 in the nucleus is maintained independently of active nuclear export or induction of autophagy. Instead, incorporation of soluble EGFP-LC3 into large macromolecular complexes within both the cytoplasm and nucleus may prevent its rapid equilibrium between the two compartments.  相似文献   

8.
Regulation of autophagy in neurons remains unclear. In this issue, Kulkarni et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202002084) show with elegant live imaging that in dendrites, but not in axons, autophagosome motility and function is regulated by synaptic activity.

Macroautophagy is a type of autophagy that refers to the capacity to form double membrane compartments called autophagosomes that engulf large protein aggregates and defective organelles. Autophagosomes fuse with lysosomes, forming degradative autolysosomes (1). Autophagosome formation depends on the conjugation of LC3-I (cytosolic) to phosphatidylethanolamine, generating LC3-II, which remains bound to autolysosomes (1). In neurons, inactivation of autophagy genes impacts neurodevelopment, axon growth and guidance, synapse formation and pruning, ultimately leading to neurodegeneration. Particularly, in motor neurons and cerebellum Purkinje cells, autophagy gene knockout leads to the accumulation of intracellular protein aggregates and degeneration, impacting movement coordination (1). Interestingly, stimulation of memory up-regulates autophagy, and while reducing autophagy reduces memory, activating it has the opposite effect on memory (2). What triggers macroautophagy in neurons remains unclear. In this issue, Kulkarni et al. test whether synaptic activity regulates autophagy and detail the impact of synaptic activity on autophagosome motility (3).Kulkarni et al. used multiple strategies to manipulate synaptic activity. They stimulated synaptic activity by depolarizing neurons with high potassium, treating them with a cocktail of antagonists of voltage-gated potassium channels and inhibitory gamma-aminobutyric A receptors, and using uncaging of the excitatory neurotransmitter glutamate. To inhibit synaptic activity, the researchers treated neurons with antagonists of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors (4). To image autophagosomes and autolysosomes (here globally termed autophagic vacuoles [AVs]) in live neurons, the authors expressed LC3 tagged with fluorescent proteins. They elegantly imaged the same neuronal compartment before and after depolarization, or under basal, increased, or reduced synaptic activity, and used kymograph analysis (via Kymoanalyser; 5) to quantify the mean speeds of AVs in both dendrites and axons. An increase in intracellular calcium measured with a genetically encoded calcium sensor, GCAMP3, indicated synaptic activity. Kulkarni et al. observed that, in dendrites, AVs stop with synaptic activity and move with synaptic inhibition (Fig. 1). This AV movement change was swift and unaltered by co-culture with astrocytes, and reversible. One key finding is that this change in AV movement occurred in dendrites, but not in axons. Interestingly, AVs stopped at or near synapses, which were identified with PSD-95-GFP.Open in a separate windowFigure 1.In dendrites, AVs stop at synapses upon synaptic activity.The authors further characterized the AVs in terms of acidity (lysotracker labelling of acidic organelles) and of degradative capacity (DQ-BSA fluorescence accumulation upon lysosomal degradation). Lysotracker motility changed similarly with synaptic activity. Interestingly, the lysotracker density increased with synaptic stimulation. The higher number of acidic organelles (likely autolysosomes) indicated increased autophagy or acidification with synaptic activity, which could underlie increased degradative activity. Indeed, about half of the LC3-positive AVs were degradative in dendrites, while in axons there was virtually no degradative AV, supporting the requirement for transport to the soma for degradation of autophagic cargo (6). Finally, Kulkarni et al. show that degradative AVs increase with synaptic activity, correlating with the reduced motility of LC3-positive AVs.An intriguing observation is that the autophagic vacuoles identified by LC3-mCherry were virtually all positive for LAMP1, a marker of late endosomes and lysosomes, indicating that dendrites mainly contain autolysosomes and no or very few autophagosomes (LC3-positive and LAMP1-negative) and late endosomes/lysosomes (LC3-negative and LAMP1-positive). One is left wondering if it results from LC3 overexpression and overflooding to interconnected organelles. An alternative possibility is that LC3 may not always label autophagosomes, in which case complementary electron microscopy is necessary for confirmation. Where are dendritic autolysosomes formed? In axons, a fraction of the LC3 autophagic vacuoles was LAMP1 negative, and the formation of autophagosomes at axon terminals has been well documented (7). Thus, do autophagosomes form in axons, fuse with LAMP1-positive late endosomes/lysosomes, and only after are they transported to dendrites? Alternatively, autophagosomes may form in dendrites and fuse with late endosomes/lysosomes, preventing their detection unless fusion is inhibited (8).Another interesting observation concerns the similar change in the motility of early endosomes, identified by Rab5, an early endosome GTPase, with synaptic activity. Other organelles, post-ER vesicles (4), and proteasomes (9) similarly display a change in motility in dendrites upon synaptic activity. In contrast, mitochondria stop moving in axons with synaptic activity (10). The significance of this arrest of several dendritic organelles with synaptic activity is an attractive area for research.Neuronal autophagy dysfunction is implicated in many neurodegenerative diseases (1). At least early in the disease, increasing autophagy improves neuronal function and synapse activity (1). Genetic risk factors include lysosomal proteins, whose defective function leads to the accumulation of nondegraded autophagic vacuoles and recapitulate neurodegenerative phenotypes (11). Lysosomal dysfunction is a mechanism of cellular aging. Moreover, synapses become dysfunctional with aging and lost in neurodegenerative diseases (12). Based on this study, synapse dysfunction and thus reduced synaptic activity could increase AV motility and reduce acidification and the degradative capacity of autolysosomes. Similarly, neuronal overexcitability, as in early Alzheimer''s disease patients with seizures, could cause excessive AV motility and degradative activity.What is the mechanism that stops AV movement? Do early endosomes, secretory vesicles, or proteasomes change motility using similar mechanisms? For post-ER vesicles, the CAMKII dependent phosphorylation of the microtubule motor Kif17 was sufficient to arrest movement (4). Alternatively, could it be the actin cytoskeleton that forms patches in the dendritic shaft at the base of postsynaptic glutamatergic synapses to halt microtubule-dependent transport of organelles (13)? More work is needed to tackle these questions and define the cell biological mechanisms by which synaptic activity controls AV function and dynamics in different neuronal compartments. Understanding the mechanisms underlying the regulation of autophagy and autophagosome maturation and degradation provides an exciting opportunity for therapeutic development in neurodegenerative diseases.  相似文献   

9.
The membrane source for autophagosome biogenesis is an unsolved mystery in the study of autophagy. ATG16L1 forms a complex with ATG12–ATG5 (the ATG16L1 complex). The ATG16L1 complex is recruited to autophagic membranes to convert MAP1LC3B-I to MAP1LC3B-II. The ATG16L1 complex dissociates from the phagophore before autophagosome membrane closure. Thus, ATG16L1 can be used as an early event marker for the study of autophagosome biogenesis. We found that among 3 proteins in the ATG16L1 complex, only ATG16L1 formed puncta-like structures when transiently overexpressed. ATG16L1+ puncta formed by transient expression could represent autophagic membrane structures. We thoroughly characterized the transiently expressed ATG16L1 in several mammalian cell lines. We found that transient expression of ATG16L1 not only inhibited autophagosome biogenesis, but also aberrantly targeted RAB11-positive recycling endosomes, resulting in recycling endosome aggregates. We conclude that transient expression of ATG16L1 is not a physiological model for the study of autophagy. Caution is warranted when reviewing findings derived from a transient expression model of ATG16L1.  相似文献   

10.
《Autophagy》2013,9(10):1639-1641
The role of membrane remodeling and phosphoinositide-binding proteins in autophagy remains elusive. PX domain proteins bind phosphoinositides and participate in membrane remodeling and trafficking events and we therefore hypothesized that one or several PX domain proteins are involved in autophagy. Indeed, the PX-BAR protein SNX18 was identified as a positive regulator of autophagosome formation using an image-based siRNA screen. We show that SNX18 interacts with ATG16L1 and LC3, and functions downstream of ATG14 and the class III PtdIns3K complex in autophagosome formation. SNX18 facilitates recruitment of ATG16L1 to perinuclear recycling endosomes, and its overexpression leads to tubulation of ATG16L1- and LC3-positive membranes. We propose that SNX18 promotes LC3 lipidation and tubulation of recycling endosomes to provide membrane for phagophore expansion.  相似文献   

11.
Kimura S  Noda T  Yoshimori T 《Autophagy》2007,3(5):452-460
During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.  相似文献   

12.
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.  相似文献   

13.
《Autophagy》2013,9(10):1642-1646
Phagophores engulf cytoplasmic material and give rise to autophagosomes, double-membrane vesicles mediating cargo transport to lysosomes for degradation. The regulation of autophagosome fusion with endosomes and lysosomes during autophagy has remained poorly characterized. Two recent papers conclude that STX17/syntaxin 17 (Syx17 in Drosophila) has an evolutionarily conserved role in autophagosome fusion with endosomes and lysosomes, acting in one SNARE complex with SNAP29 (ubisnap in Drosophila) and the endosomal/lysosomal VAMP8 (CG1599/Vamp7 in Drosophila). Surprisingly, a third report suggests that STX17 might also contribute to proper phagophore assembly. Although several experiments presented in the two human cell culture studies yielded controversial results, the essential role of STX17 in autophagic flux is now firmly established, both in cultured cells and in an animal model. Based on these data, we propose that genetic inhibition of STX17/Syx17 may be a more specific tool in autophagic flux experiments than currently used drug treatments, which impair all lysosomal degradation routes and also inactivate MTOR (mechanistic target of rapamycin), a major negative regulator of autophagy. Finally, the neuronal dysfunction and locomotion defects observed in Syx17 mutant animals point to the possible contribution of defective autophagosome clearance to various human diseases.  相似文献   

14.
During autophagy, double-membrane autophagosomes deliver sequestered cytoplasmic content to late endosomes and lysosomes for degradation. The molecular mechanism of autophagosome maturation is still poorly characterized. The small GTPase Rab11 regulates endosomal traffic and is thought to function at the level of recycling endosomes. We show that loss of Rab11 leads to accumulation of autophagosomes and late endosomes in Drosophila melanogaster. Rab11 translocates from recycling endosomes to autophagosomes in response to autophagy induction and physically interacts with Hook, a negative regulator of endosome maturation. Hook anchors endosomes to microtubules, and we show that Rab11 facilitates the fusion of endosomes and autophagosomes by removing Hook from mature late endosomes and inhibiting its homodimerization. Thus induction of autophagy appears to promote autophagic flux by increased convergence with the endosomal pathway.  相似文献   

15.
Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.  相似文献   

16.
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.  相似文献   

17.
Autophagy, a highly conserved cellular mechanism wherein various cellular components are broken down and recycled through lysosomes, has been implicated in the development of heart failure. However, tools to measure autophagic flux in vivo have been limited. Here, we tested whether monodansylcadaverine (MDC) and the lysosomotropic drug chloroquine could be used to measure autophagic flux in both in vitro and in vivo model systems. Using HL-1 cardiac-derived myocytes transfected with GFP-tagged LC3 to track changes in autophagosome formation, autophagy was stimulated by mTOR inhibitor rapamycin. Administration of chloroquine to inhibit lysosomal activity enhanced the rapamycin-induced increase in the number of cells with numerous GFP-LC3-positive autophagosomes. The chloroquine-induced increase of autophagosomes occurred in a dose-dependent manner between 1 microM and 8 microM, and reached a maximum 2 hour after treatment. Chloroquine also enhanced the accumulation of autophagosomes in cells stimulated with hydrogen peroxide, while it attenuated that induced by Bafilomycin A1, an inhibitor of V-ATPase that interferes with fusion of autophagosomes with lysosomes. The accumulation of autophagosomes was inhibited by 3-methyladenine, which is known to inhibit the early phase of the autophagic process. Using transgenic mice expressing 3 mCherry-LC3 exposed to rapamycin for 4 hr, we observed an increase in mCherry-LC3-labeled autophagosomes in myocardium, which was further increased by concurrent administration of chloroquine, thus allowing determination of flux as a more precise measure of autophagic activity in vivo. MDC injected 1 hr before sacrifice colocalized with mCherry-LC3 puncta, validating its use as a marker of autophagosomes. This study describes a method to measure autophagic flux in vivo even in non-transgenic animals, using MDC and chloroquine.  相似文献   

18.
《Autophagy》2013,9(12):1724-1740
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target.  相似文献   

19.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target.  相似文献   

20.
Rab GTPases comprises a large family of proteins, with more than 50 gene products localized in distinct subcellular compartments. Rab24 is a member of this family whose function is not presently known. In order to elucidate the role of this protein we have generated a GFP-tagged Rab24 and studied the distribution of this chimera by fluorescence microscopy. GFP-Rab24 showed a perinuclear reticular localization that often encircled the nucleus. This reticular pattern partially overlapped with ER markers, cis-Golgi, and the ER-Golgi intermediate compartment. Surprisingly, when GFP-Rab24-transfected cells were starved to induce autophagy the distribution of the protein changed dramatically. GFP-Rab24 localized in large dots, cup-shaped structures and ring-shaped vesicles. Some of these vesicles were labeled with monodansylcadaverine , a specific autophagosome marker. In the presence of vinblastine, an agent that induces the formation of very large autophagic vesicles, GFP-Rab24 accumulated in the large vacuoles that were also labeled by monodansylcadaverine. Furthermore, Rab24 colocalized with LC3, a mammalian homolog of the yeast protein Apg8/Aut7, an essential gene for autophagy. This is the first report indicating that Rab24 localizes on autophagosomes, suggesting that this Rab protein is involved in the autophagic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号