首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   

2.
Bacterial pathogens utilize pore-forming toxins or sophisticated secretion systems to establish infection in hosts. Recognition of these toxins or secretion system by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs) triggers the assembly of inflammasomes, the multiprotein complexes necessary for caspase-1 activation and the maturation of inflammatory cytokines such as IL-1β or IL-18. Here we demonstrate that both the NLRP3 and NLRC4 inflammasomes are activated by thermostable direct hemolysins (TDHs) and type III secretion system 1 (T3SS1) in response to V. parahaemolyticus infection. Furthermore, we identify T3SS1 secreted effector proteins, VopQ and VopS, which induce autophagy and the inactivation of Cdc42, respectively, to prevent mainly NLRC4 inflammasome activation. VopQ and VopS interfere with the assembly of specks in infected macrophages. These data suggest that bacterial effectors interfere with inflammasome activation and contribute to bacterial evasion from the host inflammatory responses.  相似文献   

3.
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella’s intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.  相似文献   

4.
Autophagy is a cellular process for maintaining cellular homeostasis. This process can be induced by different factors, such as immune stimuli and pathogen-associated molecules. Autophagy has an important role in the control of IL-1β secretion by macrophages and other cell types. In present study, we describe a novel role for Iraqi propolis affecting autophagy in controlling the secretion of IL-1β in bone-marrow macrophages (BMDMs). After infection with Pseudomonas aeruginosa in the presence of propolis, the degradation of IL-1β was induced, and the activity of inflammasome was reduced. Iraqi propolis-induced autophagy in in vitro and in vivo models decreased the levels of IL-1β and caspase-1. Results indicated that IL-1β pathway production is regulated by autophagy via two different novel mechanisms, namely, regulation of the activation of NLRC4 inflammasome and IL-1β targeting for lysosomal degradation.  相似文献   

5.
During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase‐1, which in turn triggers macrophage pyroptosis and IL‐1β/IL‐18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore‐forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase‐11 activation. Surprisingly, previous studies indicated that a T3SS‐induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS‐negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore‐forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll‐like receptors, and thus enhanced the expression of inflammatory proteins including pro‐IL‐1β and TNF‐α. However, mature‐IL‐1β and IL‐18 were undetectable in wild‐type mice, suggesting that ExlA failed to effectively activate caspase‐1. Nevertheless, caspase‐1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA‐induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome‐dependent process.  相似文献   

6.
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.  相似文献   

7.
The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.  相似文献   

8.

Background

The NLRP3 inflammasome is a sensor of specific pathogen, host and environmental danger molecules. Upon activation NLRP3 recruits caspase-1, which cleaves and thereby activates precursor interleukin-1β (IL-1β) and IL-18 to initiate immune responses. Several recent studies have posited that the mitochondria are a central regulator of NLRP3 function.

Scope of review

Mitochondrial reactive oxygen species (mtROS) production, mitochondrial apoptosis, mitochondrial DNA (mtDNA) release, mitophagy, calcium induced mitochondrial damage and mitochondrial co-ordination of NLRP3 localization have all been implicated in regulating NLRP3 activity. In this article we review the literature both for and against these models of NLRP3 inflammasome activation, and highlight other recent contentious issues concerning NLRP3 functioning.

Major conclusions

Although many mechanisms have been proposed for activating NLRP3, no unified model has yet to gain acceptance. Further research is required to clarify how the mitochondria might influence NLRP3 activity.

General significance

While the NLRP3 inflammasome is important for host protection against microbial infection, rare genetic mutations in NLRP3 also cause severe auto-inflammatory diseases. More recent research has implicated NLRP3 activity in pathologies such as atherosclerosis, cancer, type 2 diabetes and Alzheimer's disease. Understanding the mechanisms of NLRP3 inflammasome formation and regulation therefore has the potential to uncover new inflammasome and disease specific therapeutic targets. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

9.
Mitochondrial dysfunction is considered crucial for NLRP3 inflammasome activation partly through its release of mitochondrial toxic products, such as mitochondrial reactive oxygen species (mROS)2 and mitochondrial DNA (mtDNA). Although previous studies have shown that classical NLRP3-activating stimulations lead to mROS generation and mtDNA release, it remains poorly understood whether and how mitochondrial damage-derived factors may contribute to NLRP3 inflammasome activation. Here, we demonstrate that impairment of the mitochondrial electron transport chain by rotenone primes NLRP3 inflammasome activation only upon costimulation with ATP and not with nigericin or alum. Rotenone-induced priming of NLRP3 in the presence of ATP triggered the formation of specklike NLRP3 or ASC aggregates and the association of NLRP3 with ASC, resulting in NLRP3-dependent caspase-1 activation. Mechanistically, rotenone confers a priming signal for NLRP3 inflammasome activation only in the context of aberrant high-grade, but not low-grade, mROS production and mitochondrial hyperpolarization. By contrast, rotenone/ATP-mediated mtDNA release and mitochondrial depolarization are likely to be merely an indication of mitochondrial damage rather than triggering factors for NLRP3 inflammasome activation. Our results provide a molecular insight into the selective contribution made by mitochondrial dysfunction to the NLRP3 inflammasome pathway.  相似文献   

10.
Autophagy, which is critical for the proper turnover of organelles such as endoplasmic reticulum and mitochondria, affects diverse aspects of metabolism, and its dysregulation has been incriminated in various metabolic disorders. However, the role of autophagy of myeloid cells in adipose tissue inflammation and type 2 diabetes has not been addressed. We produced mice with myeloid cell-specific deletion of Atg7 (autophagy-related 7), an essential autophagy gene (Atg7 conditional knockout [cKO] mice). While Atg7 cKO mice were metabolically indistinguishable from control mice, they developed diabetes when bred to ob/w mice (Atg7 cKO-ob/ob mice), accompanied by increases in the crown-like structure, inflammatory cytokine expression and inflammasome activation in adipose tissue. Mφs (macrophages) from Atg7 cKO mice showed significantly higher interleukin 1 β release and inflammasome activation in response to a palmitic acid plus lipopolysaccharide combination. Moreover, a decrease in the NAD+:NADH ratio and increase in intracellular ROS content after treatment with palmitic acid in combination with lipopolysaccharide were more pronounced in Mφs from Atg7 cKO mice, suggesting that mitochondrial dysfunction in autophagy-deficient Mφs leads to an increase in lipid-induced inflammasome and metabolic deterioration in Atg7 cKO-ob/ob mice. Atg7 cKO mice were more susceptible to experimental colitis, accompanied by increased colonic cytokine expression, T helper 1 skewing and systemic bacterial invasion. These results suggest that autophagy of Mφs is important for the control of inflammasome activation in response to metabolic or extrinsic stress, and autophagy deficiency in Mφs may contribute to the progression of metabolic syndrome associated with lipid injury and colitis.  相似文献   

11.
Atherosclerosis is a maladaptive chronic inflammatory disease, which remains the leading cause of death worldwide. The NLRP3 inflammasome constitutes a major driver of atherosclerosis, yet the mechanism of action is poorly understood. Mitochondrial dysfunction is essential for NLRP3 inflammasome activation. However, whether activated NLRP3 inflammasome exacerbates mitochondrial dysfunction remains to be further elucidated. Herein, we sought to address these issues applying VX765, a well-established inhibitor of caspase 1. VX765 robustly restrains caspase 1-mediated interleukin-1β production and gasdermin D processing. Our study assigned VX765 a novel role in antagonizing NLRP3 inflammasome assembly and activation. VX765 mitigates mitochondrial damage induced by activated NLRP3 inflammasome, as evidenced by decreased mitochondrial ROS production and cytosolic release of mitochondrial DNA. VX765 blunts caspase 1-dependent cleavage and promotes mitochondrial recruitment and phosphorylation of Parkin, a key mitophagy regulator. Functionally, VX765 facilitates mitophagy, efferocytosis and M2 polarization of macrophages. It also impedes foam cell formation, migration and pyroptosis of macrophages. VX765 boosts autophagy, promotes efferocytosis, and alleviates vascular inflammation and atherosclerosis in both ApoE−/− and Ldlr−/− mice. However, these effects of VX765 were abrogated upon ablation of Nlrp3 in ApoE−/− mice. This work provides mechanistic insights into NLRP3 inflammasome assembly and this inflammasome in dictating atherosclerosis. This study highlights that manipulation of caspase 1 paves a new avenue to treatment of atherosclerotic cardiovascular disease.Subject terms: Mitophagy, Atherosclerosis  相似文献   

12.
We have previously shown that inhibition of the proteolytic activity of the proteasome induces apoptosis and suppresses essential functions of activated human CD4+ T cells, and we report now the detailed mechanisms of apoptosis following proteasome inhibition in these cells. Here we show that proteasome inhibition by bortezomib activates the mitochondrial pathway of apoptosis in activated CD4+ T cells by disrupting the equilibrium of pro‐apoptotic and anti‐apoptotic proteins at the outer mitochondrial membrane (OMM) and by inducing the generation of reactive oxygen species (ROS). Proteasome inhibition leads to accumulation of pro‐apoptotic proteins PUMA, Noxa, Bim and p53 at the OMM. This event provokes mitochondrial translocation of activated Bax and Bak homodimers, which induce loss of mitochondrial membrane potential (ΔΨm). Breakdown of ΔΨm is followed by rapid release of pro‐apoptotic Smac/DIABLO and HtrA2 from mitochondria, whereas release of cytochrome c and AIF is delayed. Cytoplasmic Smac/DIABLO and HtrA2 antagonize IAP‐mediated inhibition of partially activated caspases, leading to premature activation of caspase‐3 followed by activation of caspase‐9. Our data show that proteasome inhibition triggers the mitochondrial pathway of apoptosis by activating mutually independent apoptotic pathways. These results provide novel insights into the mechanisms of apoptosis induced by proteasome inhibition in activated T cells and underscore the future use of proteasome inhibitors for immunosuppression. J. Cell. Biochem. 108: 935–946, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces “mitochondrial priming” by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.  相似文献   

14.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

15.
Most hereditary periodic fever syndromes are mediated by deregulated IL-1β secretion. The generation of mature IL-1β requires two signals: one that induces synthesis of inflammasome components and substrates and a second that activates inflammasomes. The mechanisms that mediate autoinflammation in mevalonate kinase deficiency, a periodic fever disease characterized by a block in isoprenoid biosynthesis, are poorly understood. In studying the effects of isoprenoid shortage on IL-1 β generation, we identified a new inflammasome activation signal that originates from defects in autophagy. We find that hypersecretion of IL-1β and IL-18 requires reactive oxygen species and is associated with an oxidized redox status of monocytes but not lymphocytes. IL-1β hypersecretion by monocytes involves decreased mitochondrial stability, release of mitochondrial content into the cytosol and attenuated autophagosomal degradation. Defective autophagy, as established by ATG7 knockdown, results in prolonged cytosolic retention of damaged mitochondria and increased IL-1β secretion. Finally, activation of autophagy in healthy but not mevalonate kinase deficiency patient cells reduces IL-1β secretion. Together, these results indicate that defective autophagy can prime monocytes for mitochondria-mediated NLRP3 inflammasome activation, thereby contributing to hypersecretion of IL-1β in mevalonate kinase deficiency.  相似文献   

16.
Irisin protects the cardiovascular system against vascular diseases. However, its role in chronic kidney disease (CKD) -associated vascular calcification (VC) and the underlying mechanisms remain unclear. In the present study, we investigated the potential link among Irisin, pyroptosis, and VC under CKD conditions. During mouse vascular smooth muscle cell (VSMC) calcification induced by β-glycerophosphate (β-GP), the pyroptosis level was increased, as evidenced by the upregulated expression of pyroptosis-related proteins (cleaved CASP1, GSDMD-N, and IL1B) and pyroptotic cell death (increased numbers of PI-positive cells and LDH release). Reducing the pyroptosis levels by a CASP1 inhibitor remarkably decreased calcium deposition in β-GP-treated VSMCs. Further experiments revealed that the pyroptosis pathway was activated by excessive reactive oxygen species (ROS) production and subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in calcified VSMCs. Importantly, Irisin effectively inhibited β-GP-induced calcium deposition in VSMCs in vitro and in mice aortic rings ex vivo. Overexpression of Nlrp3 attenuated the suppressive effect of Irisin on VSMC calcification. In addition, Irisin could induce autophagy and restore autophagic flux in calcified VSMCs. Adding the autophagy inhibitor 3-methyladenine or chloroquine attenuated the inhibitory effect of Irisin on β-GP-induced ROS production, NLRP3 inflammasome activation, pyroptosis, and calcification in VSMCs. Finally, our in vivo study showed that Irisin treatment promoted autophagy, downregulated ROS level and thereby suppressed pyroptosis and medial calcification in aortic tissues of adenine-induced CKD mice. Together, our findings for the first time demonstrated that Irisin protected against VC via inducing autophagy and inhibiting VSMC pyroptosis in CKD, and Irisin might serve as an effective therapeutic agent for CKD-associated VC.Subject terms: Calcification, Chronic kidney disease  相似文献   

17.
18.
Pseudomonas aeruginosa induced acute lung injury is such a serious risk to public health, but the pathological regulation remains unclear. Here, we reported that PA mediated epithelial necroptosis plays an important role in pathological process. Pharmacological and genomic ablation of necroptosis signaling ameliorate PA mediated ALI and pulmonary inflammation. Our results further proved NLRP3 inflammasome to involve in the process. Mechanism investigation revealed the cross-talking between inflammasome activation and necroptosis that MLKL-dependent necroptosis signaling promotes the change of mitochondrial membrane potential for the release of reactive oxygen species (ROS), which is the important trigger for functional inflammasome activation. Furthermore, antioxidants such as Mito-TEMPO was confirmed to significantly restrain inflammasome activation in epithelium, resulting in a reduction in PA induced pulmonary inflammation. Taken together, our findings revealed that necroptosis-triggered NLRP3 inflammasome in epithelium plays a crucial role in PA mediated injury, which could be a potential therapeutic target for pulmonary inflammation.  相似文献   

19.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

20.
Palmitate triggers inflammatory responses in several cell types, but its effects on cardiac fibroblasts are at present unknown. The aims of the study were to (1) assess the potential of palmitate to promote inflammatory signaling in cardiac fibroblasts through TLR4 and the NLRP3 inflammasome and (2) characterize the cellular phenotype of cardiac fibroblasts exposed to palmitate. We examined whether palmitate induces inflammatory responses in cardiac fibroblasts from WT, NLRP3−/− and ASC−/− mice (C57BL/6 background). Exposure to palmitate caused production of TNF, IL-6 and CXCL2 via TLR4 activation. NLRP3 inflammasomes are activated in a two-step manner. Whereas palmitate did not prime the NLRP3 inflammasome, it induced activation in LPS-primed cardiac fibroblasts as indicated by IL-1β, IL-18 production and NLRP3-ASC co-localization. Palmitate-induced NLRP3 inflammasome activation in LPS-primed cardiac fibroblasts was associated with reduced AMPK activity, mitochondrial reactive oxygen species production and mitochondrial dysfunction. The cardiac fibroblast phenotype caused by palmitate, in an LPS and NLRP3 independent manner, was characterized by decreased cellular proliferation, contractility, collagen and MMP-2 expression, as well as increased senescence-associated β-galactosidase activity, and consistent with a state of cellular senescence. This study establishes that in vitro palmitate exposure of cardiac fibroblasts provides inflammatory responses via TLR4 and NLRP3 inflammasome activation. Palmitate also modulates cardiac fibroblast functionality, in a NLRP3 independent manner, resulting in a phenotype related to cellular senescence. These effects of palmitate could be of importance for myocardial dysfunction in obese and diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号