首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perlmutter DH 《Autophagy》2006,2(4):258-263
In the classical form of alpha-1-antitrypsin (AT) deficiency a point mutation renders aggregation-prone properties on a hepatic secretory protein. The mutant ATZ protein in retained in the endoplasmic reticulum (ER) of liver cells rather than secreted into the blood and body fluids where it ordinarily functions as an inhibitor of neutrophil proteases. A loss-of-function mechanism allows the neutrophil proteases to slowly destroy the connective tissue matrix of the lung, resulting in premature development of pulmonary emphysema as early as the third decade of life. A gain-of-toxic function mechanism is responsible for liver inflammation and carcinogenesis. Indeed this deficiency is the most common genetic cause of liver disease in children in the US. It also causes chronic liver inflammation and carcinoma that manifests itself later in life. However, the majority of affected homozygotes apparently escape liver disease. This last observation has led to the concept that genetic and/or environmental modifiers affect the disposal of mutant ATZ within the ER or affect the protective cellular responses activated by accumulation of ATZ in the ER and, in turn, these modifiers determine which homozygotes develop liver inflammation and carcinoma. In this article I review a series of studies published over the last six years showing that autophagy is specifically activated by ER accumulation of ATZ and that it plays a critical role in the disposal of this mutant protein. Indeed, the most recent studies suggest that there is specialization of the autophagic pathway in that it is specifically activated by, and designed for disposal of, the aggregated forms of ATZ while the proteasome is specialized for disposal of soluble forms of ATZ. Together, these studies provide further evidence for the importance of autophagy in the cellular adaptive response to aggregated proteins in general.  相似文献   

2.
Alpha-1-antitrypsin (AT) deficiency is a relatively common autosomal co-dominant disorder, which causes chronic lung and liver disease. A point mutation renders aggregation-prone properties on a hepatic secretory protein in such a way that the mutant protein is retained in the endoplasmic reticulum of hepatocytes rather than secreted into the blood and body fluids where it ordinarily functions as an inhibitor of neutrophil proteases. A loss-of-function mechanism allows neutrophil proteases to degrade the connective tissue matrix of the lung causing chronic emphysema. Accumulation of aggregated mutant AT in the endoplasmic reticulum of hepatocytes causes liver inflammation and carcinogenesis by a gain-of-toxic function mechanism. However, genetic epidemiology studies indicate that many, if not the majority of, affected homozygotes are protected from liver disease by unlinked genetic and/or environmental modifiers. Studies performed over the last several years have demonstrated the importance of autophagy in disposal of mutant, aggregated AT and raise the possibility that predisposition to, or protection from, liver injury and carcinogenesis is determined by the balance of de novo biogenesis of the mutant AT molecule and its autophagic disposal.  相似文献   

3.
Although there is evidence for specific subcellular morphological alterations in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), it is not clear whether these morphological changes are stereotypical or if they depend on the specific misfolded protein retained. This issue may be particularly important for mutant secretory protein alpha(1)-antitrypsin (alpha(1)AT) Z because retention of this mutant protein in the ER can cause severe target organ injury, the chronic hepatitis/hepatocellular carcinoma associated with alpha(1)AT deficiency. Here we examined the morphological changes that occur in human fibroblasts engineered for expression and ER retention of mutant alpha(1)ATZ and in human liver from three alpha(1)AT-deficient patients. In addition to marked expansion and dilatation of ER, there was an intense autophagic response. Mutant alpha(1)ATZ molecules were detected in autophagosomes by immune electron microscopy, and intracellular degradation of alpha(1)ATZ was partially reduced by chemical inhibitors of autophagy. In contrast to mutant CFTRDeltaF508, expression of mutant alpha(1)ATZ in heterologous cells did not result in the formation of aggresomes. These results show that ER retention of mutant alpha(1)ATZ is associated with a marked autophagic response and raise the possibility that autophagy represents a mechanism by which liver of alpha(1)AT-deficient patients attempts to protect itself from injury and carcinogenesis.  相似文献   

4.
α1-antitrypsin (AAT) regulates the activity of multiple proteases in the lungs and liver. A mutant of AAT (E342K) called ATZ forms polymers that are present at only low levels in the serum and induce intracellular protein inclusions, causing lung emphysema and liver cirrhosis. An understanding of factors that can reduce the intracellular accumulation of ATZ is of great interest. We now show that calreticulin (CRT), an endoplasmic reticulum (ER) glycoprotein chaperone, promotes the secretory trafficking of ATZ, enhancing the media:cell ratio. This effect is more pronounced for ATZ than with AAT and is only partially dependent on the glycan-binding site of CRT, which is generally relevant to substrate recruitment and folding by CRT. The CRT-related chaperone calnexin does not enhance ATZ secretory trafficking, despite the higher cellular abundance of calnexin-ATZ complexes. CRT deficiency alters the distributions of ATZ-ER chaperone complexes, increasing ATZ-BiP binding and inclusion body formation and reducing ATZ interactions with components required for ER-Golgi trafficking, coincident with reduced levels of the protein transport protein Sec31A in CRT-deficient cells. These findings indicate a novel role for CRT in promoting the secretory trafficking of a protein that forms polymers and large intracellular inclusions. Inefficient secretory trafficking of ATZ in the absence of CRT is coincident with enhanced accumulation of ER-derived ATZ inclusion bodies. Further understanding of the factors that control the secretory trafficking of ATZ and their regulation by CRT could lead to new therapies for lung and liver diseases linked to AAT deficiency.  相似文献   

5.
The classical form of α1-antitrypsin deficiency (ATD) is associated with hepatic fibrosis and hepatocellular carcinoma. It is caused by the proteotoxic effect of a mutant secretory protein that aberrantly accumulates in the endoplasmic reticulum of liver cells. Recently we developed a model of this deficiency in C. Elegans and adapted it for high-content drug screening using an automated, image-based array scanning. Screening of the Library of Pharmacologically Active Compounds identified fluphenazine (Flu) among several other compounds as a drug which reduced intracellular accumulation of mutant α1-antitrypsin Z (ATZ). Because it is representative of the phenothiazine drug class that appears to have autophagy enhancer properties in addition to mood stabilizing activity, and can be relatively easily re-purposed, we further investigated its effects on mutant ATZ. The results indicate that Flu reverses the phenotypic effects of ATZ accumulation in the C. elegans model of ATD at doses which increase the number of autophagosomes in vivo. Furthermore, in nanomolar concentrations, Flu enhances the rate of intracellular degradation of ATZ and reduces the cellular ATZ load in mammalian cell line models. In the PiZ mouse model Flu reduces the accumulation of ATZ in the liver and mediates a decrease in hepatic fibrosis. These results show that Flu can reduce the proteotoxicity of ATZ accumulation in vivo and, because it has been used safely in humans, this drug can be moved rapidly into trials for liver disease due to ATD. The results also provide further validation for drug discovery using C. elegans models that can be adapted to high-content drug screening platforms and used together with mammalian cell line and animal models.  相似文献   

6.
In the classical form of alpha(1)-antitrypsin deficiency, a mutant protein accumulates in a polymerized form in the endoplasmic reticulum (ER) of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant alpha(1)-antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble alpha(1)-antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein. There was no unfolded protein response. Of several distinct gene expression profiles, marked up-regulation of regulator of G signaling (RGS16) was particularly notable. RGS16 did not increase when model systems were exposed to classical inducers of ER stress, including tunicamycin and calcium ionophore, or when a nonpolymerogenic alpha(1)-antitrypsin mutant accumulated in the ER. RGS16 was up-regulated in livers from patients with alpha(1)-antitrypsin deficiency, and the degree of up-regulation correlated with the hepatic levels of insoluble alpha(1)-antitrypsin Z protein. Taken together, these results indicate that expression of RGS16 is an excellent marker for the distinct form of "ER stress" that occurs in alpha(1)-antitrypsin deficiency, presumably determined by the aggregation-prone properties of the mutant protein that characterizes the deficiency.  相似文献   

7.
The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder.KEY WORDS: α1-antitrypsin deficiency, Autophagy, Liver disease  相似文献   

8.
Homozygous, PIZZ alpha(1)-antitrypsin (alpha(1)-AT) deficiency is associated with chronic liver disease and hepatocellular carcinoma resulting from the toxic effects of mutant alpha(1)-anti-trypsin Z (alpha(1)-ATZ) protein retained in the endoplasmic reticulum (ER) of hepatocytes. However, the exact mechanism(s) by which retention of this aggregated mutant protein leads to cellular injury are still unknown. Previous studies have shown that retention of mutant alpha(1)-ATZ in the ER induces an intense autophagic response in hepatocytes. In this study, we present evidence that the autophagic response induced by ER retention of alpha(1)-ATZ also involves the mitochondria, with specific patterns of both mitochondrial autophagy and mitochondrial injury seen in cell culture models of alpha(1)-AT deficiency, in PiZ transgenic mouse liver, and in liver from alpha(1)-AT-deficient patients. Evidence for a unique pattern of caspase activation was also detected. Administration of cyclosporin A, an inhibitor of mitochondrial permeability transition, to PiZ mice was associated with a reduction in mitochondrial autophagy and injury and reduced mortality during experimental stress. These results provide evidence for the novel concept that mitochondrial damage and caspase activation play a role in the mechanism of liver cell injury in alpha(1)-AT deficiency and suggest the possibility of mechanism-based therapeutic interventions.  相似文献   

9.
Deficiency of circulating alpha-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.  相似文献   

10.
In alpha(1)-antitrypsin (alpha1AT) deficiency, a polymerogenic mutant form of the secretory glycoprotein alpha1AT, alpha1ATZ, is retained in the endoplasmic reticulum (ER) of liver cells. It is not yet known how this results in liver injury in a subgroup of deficient individuals and how the remainder of deficient individuals escapes liver disease. One possible explanation is that the "susceptible" subgroup is unable to mount the appropriate protective cellular responses. Here we examined the effect of mutant alpha1ATZ on several potential protective signaling pathways by using cell lines with inducible expression of mutant alpha1AT as well as liver from transgenic mice with liver-specific inducible expression of mutant alpha1AT. The results show that ER retention of polymerogenic mutant alpha1ATZ does not result in an unfolded protein response (UPR). The UPR can be induced in the presence of alpha1ATZ by tunicamycin excluding the possibility that the pathway has been disabled. In striking contrast, ER retention of nonpolymerogenic alpha1AT mutants does induce the UPR. These results indicate that the machinery responsible for activation of the UPR can distinguish the physical characteristics of proteins that accumulate in the ER in such a way that it can respond to misfolded but not relatively ordered polymeric structures. Accumulation of mutant alpha1ATZ does activate specific signaling pathways, including caspase-12 in mouse, caspase-4 in human, NFkappaB, and BAP31, a profile that was distinct from that activated by nonpolymerogenic alpha1AT mutants.  相似文献   

11.
SERPINA1/AAT/α-1-antitrypsin (serpin family A member 1) deficiency (SERPINA1/ AAT-D) is an autosomal recessive disorder characterized by the retention of misfolded SERPINA1/AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant reduction of serum SERPINA1/AAT level. The Z variant of SERPINA1/AAT, containing a Glu342Lys (E342K) mutation (SERPINA1E342K/ATZ), the most common form of SERPINA1/AAT-D, is prone to misfolding and polymerization, which retains it in the ER of hepatocytes and leads to liver injury. Both proteasome and macroautophagy/autophagy pathways are responsible for disposal of SERPINA1E342K/ATZ after it accumulates in the ER. However, the mechanisms by which SERPINA1E342K/ATZ is selectively degraded by autophagy remain unknown. Here, we showed that ER membrane-spanning ubiquitin ligase (E3) SYVN1/HRD1 enhances the degradation of SERPINA1E342K/ATZ through the autophagy-lysosome pathway. We found that SYVN1 promoted SERPINA1E342K/ATZ, especially Triton X 100-insoluble SERPINA1E342K/ATZ clearance. However, the effect of SYVN1 in SERPINA1E342K/ATZ clearance was impaired after autophagy inhibition, as well as in autophagy-related 5 (atg5) knockout cells. On the contrary, autophagy induction enhanced SYVN1-mediated SERPINA1E342K/ATZ degradation. Further study showed that SYVN1 mediated SERPINA1E342K/ATZ ubiquitination, which is required for autophagic degradation of SERPINA1E342K/ATZ by promoting the interaction between SERPINA1E342K/ATZ and SQSTM1/p62 for formation of the autophagy complex. Interestingly, SYVN1-mediated lysine 48 (K48)-linked polyubiquitin chains that conjugated onto SERPINA1E342K/ATZ might predominantly bind to the ubiquitin-associated (UBA) domain of SQSTM1 and couple the ubiquitinated SERPINA1E342K/ATZ to the lysosome for degradation. In addition, autophagy inhibition attenuated the suppressive effect of SYVN1 on SERPINA1E342K/ATZ cytotoxicity, and the autophagy inducer rapamycin enhanced the suppressive effect of SYVN1 on SERPINA1E342K/ATZ-induced cell apoptosis. Therefore, this study proved that SYVN1 enhances SERPINA1E342K/ATZ degradation through SQSTM1-dependent autophagy and attenuates SERPINA1E342K/ATZ cytotoxicity.  相似文献   

12.
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.  相似文献   

13.
14.
Mutant alpha(1)-antitrypsin Z (alpha(1)-ATZ) protein, which has a tendency to form aggregated polymers as it accumulates within the endoplasmic reticulum of the liver cells, is associated with the development of chronic liver injury and hepatocellular carcinoma in hereditary alpha(1)-antitrypsin (alpha(1)-AT) deficiency. Previous studies have suggested that efficient intracellular degradation of alpha(1)-ATZ is correlated with protection from liver disease in alpha(1)-AT deficiency and that the ubiquitin-proteasome system accounts for a major route, but not the sole route, of alpha(1)-ATZ disposal. Yet another intracellular degradation system, autophagy, has also been implicated in the pathophysiology of alpha(1)-AT deficiency. To provide genetic evidence for autophagy-mediated disposal of alpha(1)-ATZ, here we used cell lines deleted for the Atg5 gene that is necessary for initiation of autophagy. In the absence of autophagy, the degradation of alpha(1)-ATZ was retarded, and the characteristic cellular inclusions of alpha(1)-ATZ accumulated. In wild-type cells, colocalization of the autophagosomal membrane marker GFP-LC3 and alpha(1)-ATZ was observed, and this colocalization was enhanced when clearance of autophagosomes was prevented by inhibiting fusion between autophagosome and lysosome. By using a transgenic mouse with liver-specific inducible expression of alpha(1)-ATZ mated to the GFP-LC3 mouse, we also found that expression of alpha(1)-ATZ in the liver in vivo is sufficient to induce autophagy. These data provide definitive evidence that autophagy can participate in the quality control/degradative pathway for alpha(1)-ATZ and suggest that autophagic degradation plays a fundamental role in preventing toxic accumulation of alpha(1)-ATZ.  相似文献   

15.
Protein quality control processes active in the endoplasmic reticulum (ER), including ER-associated protein degradation (ERAD) and the unfolded protein response (UPR), prevent the cytotoxic effects that can result from the accumulation of misfolded proteins. Characterization of a yeast mutant deficient in ERAD, a proteasome-dependent degradation pathway, revealed the employment of two overflow pathways from the ER to the vacuole when ERAD was compromised. One removes the soluble misfolded protein via the biosynthetic pathway and the second clears aggregated proteins via autophagy. Previously, autophagy had been implicated in the clearance of cytoplasmic aggresomes, but was not known to play a direct role in ER protein quality control. These findings provide insight into the molecular mechanisms that result in the gain-of-function liver disease associated with both alpha1-deficiency and hypofibrinogenemia (abnormally low levels of plasma fibrinogen, which is required for blood clotting), and emphasize the need for a more complete understanding of the molecular mechanisms of autophagy and its relationship to protein quality control.  相似文献   

16.
Autophagy is an evolutionally conserved process for the bulk degradation of cytoplasmic proteins and organelles. Recent observations indicate that autophagy is induced in response to cellular insults that result in the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER). However, the signaling mechanisms that activate autophagy under these conditions are not understood. Here, we report that ER stress-induced autophagy requires the activation of protein kinase C (PKC), a member of the novel-type PKC family. Induction of ER stress by treatment with either thapsigargin or tunicamycin activated autophagy in immortalized hepatocytes as monitored by the conversion LC3-I to LC3-II, clustering of LC3 into dot-like cytoplasmic structures, and electron microscopic detection of autophagosomes. Pharmacological inhibition of PKC or small interfering RNA-mediated knockdown of PKC prevented the autophagic response to ER stress. Treatment with ER stressors induced PKC phosphorylation within the activation loop and localization of phospho-PKC to LC3-containing dot structures in the cytoplasm. However, signaling through the known unfolded protein response sensors was not required for PKC activation. PKC activation and stress-induced autophagy were blocked by chelation of intracellular Ca(2+) with BAPTA-AM. PKC was not activated or required for autophagy in response to amino acid starvation. These observations indicate that Ca(2+)-dependent PKC activation is specifically required for autophagy in response to ER stress but not in response to amino acid starvation.  相似文献   

17.
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.  相似文献   

18.
Type I collagen is a major component of the extracellular matrix, and mutations in the collagen gene cause several matrix-associated diseases. These mutant procollagens are misfolded and often aggregated in the endoplasmic reticulum (ER). Although the misfolded procollagens are potentially toxic to the cell, little is known about how they are eliminated from the ER. Here, we show that procollagen that can initially trimerize but then aggregates in the ER are eliminated by an autophagy-lysosome pathway, but not by the ER-associated degradation (ERAD) pathway. Inhibition of autophagy by specific inhibitors or RNAi-mediated knockdown of an autophagy-related gene significantly stimulated accumulation of aggregated procollagen trimers in the ER, and activation of autophagy with rapamycin resulted in reduced amount of aggregates. In contrast, a mutant procollagen which has a compromised ability to form trimers was degraded by ERAD. Moreover, we found that autophagy plays an essential role in protecting cells against the toxicity of the ERAD-inefficient procollagen aggregates. The autophagic elimination of aggregated procollagen occurs independently of the ERAD system. These results indicate that autophagy is a final cell protection strategy deployed against ER-accumulated cytotoxic aggregates that are not able to be removed by ERAD.  相似文献   

19.
A delay in intracellular degradation of the mutant alpha(1)-antitrypsin (alpha(1)AT)Z molecule is associated with greater retention within the endoplasmic reticulum (ER) and susceptibility to liver disease in a subgroup of patients with alpha(1)AT deficiency. Recent studies have shown that alpha(1)ATZ is ordinarily degraded in the ER by a mechanism that involves the proteasome, as demonstrated in intact cells using human fibroblast cell lines engineered for expression of alpha(1)ATZ and in a cell-free microsomal translocation assay system programmed with purified alpha(1)ATZ mRNA. To determine whether the ubiquitin system is required for proteasomal degradation of alpha(1)ATZ and whether specific components of the ubiquitin system can be implicated, we have now used two approaches. First, we overexpressed a dominant-negative ubiquitin mutant (UbK48R-G76A) by transient transfection in the human fibroblast cell lines expressing alpha(1)ATZ. The results showed that there was marked, specific, and selective inhibition of alpha(1)ATZ degradation mediated by UbK48R-G76A, indicating that the ubiquitin system is at least in part involved in ER degradation of alpha(1)ATZ. Second, we subjected reticulocyte lysate to DE52 chromatography and tested the resulting well-characterized fractions in the cell-free system. The results showed that there were both ubiquitin-dependent and -independent proteasomal mechanisms for degradation of alpha(1)ATZ and that the ubiquitin-conjugating enzyme E2-F1 may play a role in the ubiquitin-dependent proteasomal mechanism.  相似文献   

20.
Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号