首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Biosorption of malathion from aqueous solution was studied using Bacillus sp. S14 immobilised on calcium alginate (3%) using a packed bed column reactor at a temperature of 25 °C and a pH of 7.0. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and influent malathion concentration. Maximum removal capacity (57%) was found at 4 mL min-1 flow rate, 6.0 cm bed height and 25 mg L-1 influent malathion concentration. The Adam-Bohart model, Wolborska model, Thomas model, Yoon-Nelson model were employed to determine characteristic parameters such as saturation concentration, external mass transfer coefficient, Thomas rate constant, the maximum solid phase concentration of the solute, rate constant, and the time required for 50% adsorbate breakthrough time, which are all useful for process design. Experimental data were well fitted with Adam–Bohart model at the lower region of effluent/influent malathion concentration values but at higher region values data fitted well with the Thomas and Yoon-Nelson models.  相似文献   

2.
Removal of Pb(II) from an aqueous environment using biosorbents is a cost-effective and environmentally benign method. The biosorption process, however, is little understood for biosorbents prepared from plant materials. In this study, the biosorption process was investigated by evaluating four adsorption models. A fixed-bed column was prepared using a biosorbent prepared from the aquatic plant Hydrilla verticillata. The effect of bed height and flow rate on the biosorption process was investigated. The objective of the study was to determine the ability of H. verticillata to biosorb Pb(II) from an aqueous environment and to understand the process, through modeling, to provide a basis to develop a practical biosorbent column. Experimental breakthrough curves for biosorption of 50 mg L?1 aqueous Pb(II) using a fixed-bed column with 1.00 cm inner diameter were fitted to the Thomas, Adams-Bohart, Belter, and bed depth service time (BDST) models to investigate the behavior of each model according to the adsorption system and thus understand the adsorption mechanism. Model parameters were evaluated using linear and nonlinear regression methods. The biosorbent removed 65% (82.39 mg g?1 of biosorbent) of Pb(II) from an aqueous solution of Pb(NO3)2 at a flow rate of 5.0 ml min?1 in a 10 cm column. Na2CO3 was used to recover the adsorbed Pb(II) ions as PbCO3 from the biosorbent. The Pb(II) was completely desorbed at a bed height of 10.0 cm and a flow rate of 5.0 ml min?1. Fourier transform infrared (FT-IR) analysis of the native biosorbent and Pb(II)-loaded biosorbent indicated that the hydroxyl groups and carboxylic acid groups were involved in the metal bonding process. The FT-IR spectrum of Pb(II)-desorbed biosorbent showed an intermediate peak shift, indicating that Pb(II) ions were replaced by Na+ ions through an ion-exchange process. Of the four models tested, the Thomas and BDST models showed good agreement with experimental data. The calculated bed sorption capacity N0 and rate constant ka were 31.7 g L?1 and 13.6 × 10?4 L mg?1 min?1 for the Ct/C0 value of 0.02. The BDST model can be used to estimate the column parameters to design a large-scale column.  相似文献   

3.
Abstract

A continuous adsorption study in a fixed bed column using coco-peat (CP) as an adsorbent was carried out for the removal of toxic malachite green (MG) from contaminated water. Fixed bed column studies were carried out to check field application viability. Various parameters like particle size, pH, concentration, dose and interference were exercised to optimize dye removal. Data obtained from breakthrough column studies were evaluated using Thomas and BDST model. Thomas rate constants Kt (0.22?ml min?1 mg?1) and adsorption capacity qo (181.04?mg g?1) were estimated and found to favor efficiency of CP. Thomas model was tested with several parameters like flow rate, concentration, and bed depth. Upon increase in input dye concentration, flow rate and bed height, adsorption coefficients increased. According to BDST model, maximum dye uptake of 468.26?mg/l was obtained with an input dye concentration of 5?mg/l. HYBRID and MPSD error functions were tested and found that Thomas model fits best. Dilute hydrochloric acid was found best for desorption. Real wastewater from textile industry was analyzed and confirmed the prospect of large-scale industrial application. In conclusion, coco-peat can be used as a promising bio-sorbent in column bed for scavenging of MG from contaminated water.  相似文献   

4.
Abstract

Biosorption is potentially an attractive technology for the treatment of wastewater by removing pesticide molecules from dilute solutions. This study investigated the feasibility of an isolated Bacillus sp. S14 immobilized in calcium alginate that was used as a biosorbent for Malathion removal from aqueous solutions in batch mode. The highest value of Malathion uptake by isolated Bacillus sp. S14 (1.33g L?1, dry basis) immobilized in 3% calcium alginate was 64.4% at 25°C and pH7.0 when the initial Malathion concentration was 50 mg L?1. Equilibrium was attained at 8h. The sorption data conformed well to the Fruendlich isotherm model.  相似文献   

5.
The objective of this study was to assess the efficacy of a bench-scale, acetate-fed, packed bed bioreactor (PBR) to treat low concentrations (>1 mg L?1) of perchlorate (ClO4 ?) in groundwater collected from an impacted site. The PBR consisted of a cylindrical plexiglass column packed with Celite, a diatomaceous earth product, as a solid support medium. The reactor was inoculated with a ClO?4 ?-reducing bacterial isolate, perclace. Results showed that with influent ClO4 ? concentrations of approximately 800 μg L?1, nondetectable effluent concentrations (>4 μg L?1) were achieved with the PBR/perclace system at residence time as low as 0.3 h. Influent acetate concentrations of less than 500 mg L?1 yielded nondetectable effluent ClO? 4 concentrations, and acetate concentrations generally less than 50 mg L?1 were present in the effluent. Nitrate (NO? ?3) was also removed in this system, while sulfate (SO4 2?) reduction was not observed. The pH remained relatively constant during the process.  相似文献   

6.
The efficiency of batch and continuous systems of copper removal by Sargassum sinicola was studied. The effects of flow rate, initial metal concentration, and bed density on the capacity of the continuous system were also recorded. In batch systems, the maximum biosorption capacity was calculated as 49.63?±?0.88 mg g?1; in the continuous system, under the following conditions: flow rate of 10 mL min?1, initial solution of 200 mg Cu L?1, bed density of 150 g L?1, and higher copper removal of 62.39?±?1.91 mg g?1 was achieved. The Thomas model can be used to predict the breakthrough curves, but it underestimated breakthrough time.  相似文献   

7.
This study characterized the microbial community and population dynamics in an anaerobic hybrid reactor (AHR) treating cassava starch wastewater. Methanogens and nonmethanogens were followed during the start-up and operation of the reactor, and linked to operational and performance data. Biomass samples taken from the sludge bed and packed bed zones of the AHR at intervals throughout the operational period were examined by 16S rRNA fluorescence in situ hybridization (FISH). The start-up seed and the reactor biomass were sampled during the feeding of the wastewater with a chemical oxygen demand (COD) value of 8 g L−1 and a hydraulic retention time (HRT) of 8 days. These samples were characterized by the predominance of cells with long-rod morphology similar to Methanosaeta spp. Following a sharp operational change, accomplished by increasing the COD concentration of the organic influent from 8 to 10 g L−1 and reducing the HRT from 8 to 5 days, there was a doubling of the organic loading rate, a reduction of the COD removal efficiency, as well as decreased methane content in the biogas and an accumulation of total volatile acids in the reactor. Moreover, this operational change resulted in a significant population shift from long-rod Methanosaeta-like cells to tetrad-forming Methanosarcina-like cells. The distributions of microbial populations involved in different zones of the AHR were determined. The results showed that nonmethanogens became the predominant population in both sludge and the packed bed zone. However, the percentage of methanogens in the packed bed zone was higher than that in the sludge bed zone. This higher percentage of methanogens was likely caused by the fact that the packed bed zone provided a suitable environmental condition with an appropriate nutrient availability for methanogen growth.  相似文献   

8.
9.
The dynamic removal of lead, copper and cadmium in a single component system by Phanerochaete chrysosporium was studied in packed columns. The packed columns consisted of biomass of P. chrysosporium immobilized on polyurethane foam cubes. The performances of packed columns were described through the concept of breakthrough and the values of column parameters predicted as a function of bed depth. The column biosorption data were evaluated in terms of maximum (equilibrium) capacity of the column, the amount of metal loading and the yield of the process. The maximum capacities for lead, copper and cadmium were 70.7, 43.7 and 70.8 mg, respectively, and their yields were 39.2, 40.6 and 41%, respectively. The kinetic and mass transfer aspects of the dynamic removal of the three metals were studied using three mathematical models commonly used to describe the column performance in adsorption processes. Column studies showed good agreement between the experimental data and the simulated breakthrough curves obtained with Adams-Bohart or the Wolborska model and the Clark model. While the initial segment of the breakthrough curve was defined by the Adams-Bohart and Wolborska models, the whole breakthrough curve was well predicted by the Clark model for all the three metals studied.  相似文献   

10.
The objective of this study was to investigate the physiological indices of competitive routines in women''s artistic gymnastics by characterizing post-exercise heart rate (HR), oxygen uptake (VO2) and peak blood lactate concentration (Lmax) in a group of eight young elite-oriented female gymnasts. HR was continuously monitored with Polar RS400 monitors during the test event simulating a competition environment. Within 5 s of the end of each routine, the breath-by-breath gas analyser mask was placed on the face to record VO2. VO2max was calculated by the backward extrapolation method of the VO2 recovery curve. Lmax was obtained during recovery (min 1, 3, 5, 7 and 10) subsequent to each event. One week later, HR, VO2 and Lmax were measured during an incremental continuous treadmill test. The treadmill test was confirmed as the assessment with the highest physiological demand. The gymnasts reached their highest values of HR (183-199 beats · min-1), VO2/Bm (33-44 ml · kg-1 · min-1) and Lmax (7-9 mmol · l-1) in the floor and uneven bars exercises. The vault was the event with the lowest HR (154-166 beats · min-1) and Lmax (2.4-2.6 mmol · l-1), and the balance beam had the lowest VO2 (27-35 ml · kg-1 · min-1). The mean relative peak intensities attained in the different events, which ranged from 65 to 85% of the individual VO2max and HRmax recorded in the laboratory, suggest that cardiorespiratory and metabolic demands are higher than previously indicated. The high percentage of VO2 measured, particularly after the floor event, suggests that aerobic power training should not be neglected in women''s artistic gymnastics.  相似文献   

11.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized.  相似文献   

12.
Summary Enzymic conversion of glucose to fructose was carried out in a packed bed and in a fluidized bed reactor. The flow dynamics of these two flow systems, loaded with two different types of immobilized loaded with two different types of immobilized glucose isomerase particles, were studied. The theoretical RTD curve calculated from the axial dispersed plug flow model equation was matched to the experimental RTD curve by an optimization technique. The effect of fluid velocity on the extent of liquid dispersion was established. Theoretical predictions on the conversion of glucose to fructose were calculated using three mathematical models, namely, a plug flow model, a continuous stirred tank reactor (CSTR) model and an axial dispersed plug flow model. The experimental results showed that the axial dispersed plug flow model was superior in predicting the performance of both the packed bed and fluidized bed reactor.Abbreviations C Dimensionless concentration - D Dispersion coefficient [cm2/sec] - d p Mean particle diameter [cm] - E Enzyme concentration [mol/gm] - F Fructose concentration [mol/cm3] - F e Equilibrium fructose concentration [mol/cm3] - G Glucose concentration [mol/cm3] - G e Equílibrium glucose concentration [mol/cm3] - G o Initial glucose concentration [mol/cm3] - Reduced glucose concentration [mol/cm3] - K Equilibrium constant - K mf Forward reaction rate constant [mol/cm3] - K mr Reserve reaction rate constant [mol/cm3] - K m Rate constant [mol/cm3] - L Total length of the reactor bed [cm] - l Length [cm] - Q Flow rate [cm3/s] - r Rate of reaction based on volume of substrate - u Superficial liquid velocity [cm/s] - v Interstitial liquid velocity [cm/s] - V Reactor bed volume [cm3] - V mf Forward reaction rate constant [mol/s·g enzyme] - V mr Reserve reaction rate constant [mol/s·g enzyme] - z Dimensionless distance along the reactor - Density [g/cm2]  相似文献   

13.
Yan G  Xu X  Yao L  Lu L  Zhao T  Zhang W 《Bioresource technology》2011,102(7):4628-4632
As one of the plug-flow reactors, biological aerated filter (BAF) reactor was divided into four sampling sectors to understand the characteristics of elemental nitrogen transformation during the reaction process, and then the different characteristics of elemental nitrogen transformation caused by different NH3-N loadings, biological quantities and activities in each section were obtained. The results showed that the total transformation ratio in the nitrifying reactor was more than 90% in the absence of any organic carbon resource, at the same time, more than 65% NH3-N in the influent were nitrified at the filter height of 70 cm below under the conditions of the influent runoff 9-19 L/h, the gas-water ratio 4-5:1, the dissolved oxygen 3.0-5.8 mg/L and the NH3-N load 0.28-0.48 kg NH3-N/m3 d. On the base of the Eckenfelder mode, the kinetics equation of the NH3-N transformation along the reactor was Se = S0 exp(−0.0134D/L1.2612).  相似文献   

14.

The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L−1 to 66.9 mg L−1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L−1 and 18.9 mg LAS L−1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L−1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.

  相似文献   

15.
The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h?1, K i = 111 mg L?1, K s  = 30.77 mg L?1 and K = 100 mg L?1. In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400–1,200 mg L?1 and 24–7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L?1 day?1.  相似文献   

16.
An industrial scale reactor concept for continuous cultivation of immobilized animal cells (e.g. hybridoma cells) in a radial-flow fixed bed is presented, where low molecular weight metabolites are removed via dialysis membrane and high molecular products (e.g. monoclonal antibodies) are enriched. In a new nutrient-split feeding strategy concentrated medium is fed directly to the fixed bed unit, whereas a buffer solution is used as dialysis fluid. This feeding strategy was investigated in a laboratory scale reactor with hybridoma cells for production of monoclonal antibodies. A steady state monoclonal antibody concentration of 478 mg l-1 was reached, appr. 15 times more compared to the concentration reached in chemostat cultures with suspended cells. Glucose and glutamine were used up to 98%. The experiments were described successfully with a kinetic model for immobilized growing cells. Conclusions were drawn for scale-up and design of the large scale system.Abbreviations: cGlc – glucose concentration, mmol l-1; cGln – glutamine concentration, mmol l-1; cAmm – ammonia concentration, mmol l-1; cLac – lactate concentration, mmol l-1; cMAb – MAb concentration, mg l-1; D – dilution rate, d-1; Di – dilution rate in the inner chamber of the membrane dialysis reactor, d-1; D0 – dilution rate in the outer chamber of the membrane dialysis reactor, d-1; q*FB,Glc – volume specific glucose uptake rate related to the fixed bed volume, mmol lFB -1 h-1; q*FB,Gln – volume specific glutamine uptake rate related to the fixed bed volume, mmol lFB -1 h-1.  相似文献   

17.
Continuous asymmetric reduction of 4-oxoisophorone by the thermophilic bacterium Thermomonospora curvata JTS321 was examined using three reactor systems: packed bed, fluidized bed and hollow fiber. T. curvata was immobilized in polyacrylamide-hydrazide gels when used in the packed and fluidized bed reactors. Of the three reactor systems, the highest productivity (964 mg.1-1.h-1) was observed in the fluidized bed reactor. However, many cells grew outside of the gel matrix, causing product contamination. The productivity of the hollow fiber reactor was 504 mg.1-1.h-1; the problem of cell contamination of the product was avoided, as the molecular cut-off of the hollow fibers (400 000) was of an appropriate size to prevent cell leakage to the product stream. We therefore consider that the hollow fiber reactor is most suitable for continuous microbial conversions.  相似文献   

18.
Both conventional and genetic engineering techniques can significantly improve the performance of animal cell cultures for the large-scale production of pharmaceutical products. In this paper, the effect of such techniques on cell yield and antibody production of two NS0 cell lines is presented. On the one hand, the effect of fed-batch cultivation using dialysis is compared to cultivation without dialysis. Maximum cell density could be increased by a factor of ~5–7 by dialysis fed-batch cultivation. On the other hand, suppression of apoptosis in the NS0 cell line 6A1 bcl-2 resulted in a prolonged growth phase and a higher viability and maximum cell density in fed-batch cultivation in contrast to the control cell line 6A1 (100)3. These factors resulted in more product formation (by a factor ~2). Finally, the adaptive model-based OLFO controller, developed as a general tool for cell culture fed-batch processes, was able to control the fed-batch and dialysis fed-batch cultivations of both cell lines.Abbreviations A membrane area (dm2) - c Glc,F glucose concentration in nutrient feed (mmol L–1) - c Glc,FD glucose concentration in dialysis feed (mmol L–1) - c Glc,i glucose concentration in inner reactor chamber (mmol L–1) - c Glc,o glucose concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Lac,FD lactate concentration in dialysis feed (mmol L–1) - c Lac,i lactate concentration in inner reactor chamber (mmol L–1) - c Lac,o lactate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c LS,FD limiting substrate concentration in dialysis feed (mmol L–1) - c LS,i limiting substrate concentration in inner reactor chamber (mmol L–1) - c LS,o limiting substrate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Mab monoclonal antibody concentration (mg L–1) - F D feed rate of dialysis feed (L h–1) - F Glc feed rate of nutrient concentrate feed (L h–1) - K d maximum death constant (h–1) - k d,LS death rate constant for limiting substrate (mmol L–1) - k Glc monod kinetic constant for glucose uptake (mmol L–1) - k Lac monod kinetic constant for lactate uptake (mmol L–1) - k LS monod kinetic constant for limiting substrate uptake (mmol L–1) - K Lys cell lysis constant (h–1) - K S,Glc monod kinetic constant for glucose (mmol L–1) - K S,LS monod kinetic constant for limiting substrate (mmol L–1) - µ cell-specific growth rate (h–1) - µ d cell-specific death rate (h–1) - µ d,min minimum cell-specific death rate (h–1) - µ max maximum cell-specific growth rate (h–1) - P Glc membrane permeation coefficient for glucose (dm h–1) - P Lac membrane permeation coefficient for lactate (dm h–1) - P LS membrane permeation coefficient for limiting substrate (dm h–1) - q Glc cell-specific glucose uptake rate (mmol cell–1 h–1) - q Glc,max maximum cell-specific glucose uptake rate (mmol cell–1 h–1) - q Lac cell-specific lactate uptake/production rate (mmol cell–1 h–1) - q Lac,max maximum cell-specific lactate uptake rate (mmol cell–1 h–1) - q LS cell-specific limiting substrate uptake rate (mmol cell–1 h–1) - q LS,max maximum cell-specific limiting substrate uptake rate (mmol cell –1 h–1) - q Mab cell-specific antibody production rate (mg cell–1 h–1) - q MAb,max maximum cell-specific antibody production rate (mg cell–1 h–1) - t time (h) - V i volume of inner reactor chamber (culture chamber) (L) - V o volume of outer reactor chamber (dialysis chamber) (L) - X t total cell concentration (cells L–1) - X viable cell concentration (cells L–1) - Y Lac/Glc kinetic production constant (stoichiometric ratio of lactate production and glucose uptake) (–)  相似文献   

19.
In this study, a novel method of gradient dilution feeding substrate (GDFS) was established to improve the yield of angiotensin-converting enzyme (ACE) inhibitory peptides from milk protein. The hydrolysis process stability, enzymatic efficiency and kinetics of the method were studied and compared with traditional feeding modes, viz., adding water after feeding substrate or constant concentration feeding substrate. Results showed that the GDFS mode achieved the highest membrane flux and lowest fluctuation of protein concentration in the reactor. Moreover, the GDFS maximized protein conversion rate, yield of peptides, and ACE-inhibitory activity, with their values of 67.58 %, 138.51 g/(g*Neutrase), and 0.74 mg/mL (IC50), respectively. In further study, the kinetic model of GDFS mode was successfully established with KM of 69.481 g/L and Vmax of 0.752 g·L−1 min−1. Based on the optimum condition of the kinetic model, the practical longest runtime was 720 min. Obtained results suggested that GDFS mode could be used as an alternative method in the preparation of high-yield bioactive peptides.  相似文献   

20.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号