首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1beta processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial-host interactions.  相似文献   

2.
Suzuki T  Núñez G 《Autophagy》2008,4(1):73-75
Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms remain poorly understood. In our recent study, we presented evidence that caspase-1 activation and IL-1beta processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf and caspase-1 were critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC is dispensable. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Furthermore, autophagy induction was associated with transient resistance to pyroptosis. These results indicate that autophagy in macrophages is regulated by the Ipaf inflammasome, providing a novel function for NLR proteins in bacterial-host interactions.  相似文献   

3.
Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.  相似文献   

4.
Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ Yersinia pseudotuberculosis (Yptb). YopJ Yptb-induced macrophage death was dependent on caspase-1 activation, resulting in rapid permeability to small molecules, followed by membrane breakdown and DNA damage, and accompanied by cleavage and release of proinflammatory interleukin-18. Induction of caspase-1-dependent death, or pyroptosis, required the bacterial type III translocon but none of its known translocated proteins. Wild-type Yptb infection also triggered pyroptosis: YopJ-dependent activation of proapoptotic caspase-3 was significantly delayed in activated macrophages and resulted in caspase-1-dependent pyroptosis. The transition to susceptibility was not limited to LPS activation; it was also seen in macrophages activated with other Toll-like receptor (TLR) ligands and intact nonviable bacteria. Yptb infection triggered macrophage activation and activation of caspase-1 in vivo. Y. pestis infection of activated macrophages also stimulated caspase-1 activation. These results indicate that host signaling triggered by TLR and other activating ligands during the course of Yersinia infection redirects both the mechanism of host cell death and the downstream consequences of death by shifting from noninflammatory apoptosis to inflammatory pyroptosis.  相似文献   

5.
Legionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium.  相似文献   

6.
NOD-like receptor (NLR) proteins (Nlrps) are cytosolic sensors responsible for detection of pathogen and danger-associated molecular patterns through unknown mechanisms. Their activation in response to a wide range of intracellular danger signals leads to formation of the inflammasome, caspase-1 activation, rapid programmed cell death (pyroptosis) and maturation of IL-1β and IL-18. Anthrax lethal toxin (LT) induces the caspase-1-dependent pyroptosis of mouse and rat macrophages isolated from certain inbred rodent strains through activation of the NOD-like receptor (NLR) Nlrp1 inflammasome. Here we show that LT cleaves rat Nlrp1 and this cleavage is required for toxin-induced inflammasome activation, IL-1 β release, and macrophage pyroptosis. These results identify both a previously unrecognized mechanism of activation of an NLR and a new, physiologically relevant protein substrate of LT.  相似文献   

7.
Angiostrongylus cantonensis is a metastrongyloid nematode that causes eosinophilic meningoencephalitis in humans. A high infestation of A. cantonensis can cause permanent brain damage or even death. The inflammasome is an oligomeric molecular platform that can detect microbial pathogens and activate inflammatory cytokines. The recognition of larval surface antigens by pattern recognition receptors (PRRs) can cause oligomerization of the NOD-like receptor (NLR) or absent in melanoma 2 (AIM2) with the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) to form a caspase-1-activating scaffold. Activated caspase-1 converts pro-inflammatory cytokines into their mature, active forms. Helminths infection has been shown to activate NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasomes. In this study, we aimed to investigate the mechanism of inflammasome activation upon A. cantonensis infection in a mouse model. This study provides evidence that A. cantonensis infection can activate NLRP1B and NLRC4 inflammasomes and promote pyroptosis to cause meningoencephalitis.  相似文献   

8.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   

9.
Mycobacterium bovis is the causative agent of tuberculosis in a wide range of mammals, including humans. Macrophages are the first line of host defense. They secrete proinflammatory cytokines, such as interleukin-1 beta (IL-1β), in response to mycobacterial infection, but the underlying mechanisms by which human macrophages are activated and release IL-1β following M. bovis infection are poorly understood. Here we show that the ‘nucleotide binding and oligomerization of domain-like receptor (NLR) family pyrin domain containing 7 protein’ (NLRP7) inflammasome is involved in IL-1β secretion and caspase-1 activation induced by M. bovis infection in THP-1 macrophages. NLRP7 inflammasome activation promotes the induction of pyroptosis as well as the expression of tumor necrosis factor alpha (TNF-α), Chemokine (C-C motif) ligand 3 (CCL3) and IL-1β mRNAs. Thus, the NLRP7 inflammasome contributes to IL-1β secretion and induction of pyroptosis in response to M. bovis infection in THP-1 macrophages.  相似文献   

10.
The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.  相似文献   

11.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

12.

Background

Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown.

Methods and Results

Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis.

Conclusion

Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.  相似文献   

13.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

14.
Pathogens are detected by a variety of innate immune sensors in host cells leading to rapid induction of cell autonomous responses. Proinflammatory cytokine secretion and a specialized form of inflammatory cell death called pyroptosis are induced during infection through activation of caspase-1. Pathogen-induced caspase-1 activation is regulated in large part by a vast array of cystosolic sensor proteins, including NLRs and AIM2, and an adaptor protein called ASC. Together, these proteins cooperate in forming caspase-1 activation platforms and, more importantly, direct caspase-1 toward cytokine secretion or cell death.  相似文献   

15.
As a widely acknowledged FDA-approved dietary supplement or over-the-counter medicines, dehydroepiandrosterone (DHEA) exerts anti-inflammatory and immunomodulatory function. Pyroptosis is an important form of programmed cell death (PCD), and which acts a key role in the body’s anti-infection and inflammatory responses. But the effects and mechanisms of DHEA on pyroptosis remain unclear. Here, we found that DHEA inhibited the NLRP3 inflammasome components expression by blocking inflammatory signals in lipopolysaccharide (LPS)-primed macrophages, and prevented the bacterial toxin nigericin (Nig)-induced NLRP3 inflammasome assembly. However, DHEA exacerbated NLRP3-independent cell death in Nig-treated inflammatory macrophages. During this process, DHEA induced the abnormal autophagy, which reflected as the blocking of autophagic flux and the accumulation of autophagy receptor p62 (SQSTM1) protein. In addition, DHEA caused a burst of reactive oxygen species (ROS) and activated extracellular signal-regulated kinase (ERK) phosphorylation in LPS plus Nig-stimulated macrophages but not in LPS-treated macrophages. Mechanistically, the present study certified that the activation of G protein-coupled estrogen receptor (GPER) signal mediated the cell death induced by DHEA in Nig-stimulated inflammatory macrophages, as GPER specific inhibitor G15 alleviated the abnormal autophagy and ultimately prevented the gasdermin D (GSDMD)-mediated pyroptosis induced by DHEA. Collectively, DHEA can exacerbate Nig-induced abnormal autophagy and pyroptosis via activation of GPER in LPS-primed macrophages, which prompts us the potential application value of DHEA in anti-infection or anti-tumor immunity.Subject terms: Cell death and immune response, Immune cell death  相似文献   

16.
The inflammasome is a signalling platform leading to caspase-1 activation. Caspase-1 causes pyroptosis, a necrotic-like cell death. AIM2 is an inflammasome sensor for cytosolic DNA. The adaptor molecule ASC mediates AIM2-dependent caspase-1 activation. To date, no function besides caspase-1 activation has been ascribed to the AIM2/ASC complex. Here, by comparing the effect of gene inactivation at different levels of the inflammasome pathway, we uncovered a novel cell death pathway activated in an AIM2/ASC-dependent manner. Francisella tularensis, the agent of tularaemia, triggers AIM2/ASC-dependent caspase-3-mediated apoptosis in caspase-1-deficient macrophages. We further show that AIM2 engagement leads to ASC-dependent, caspase-1-independent activation of caspase-8 and caspase-9 and that caspase-1-independent death is reverted upon caspase-8 inhibition. Caspase-8 interacts with ASC and active caspase-8 specifically colocalizes with the AIM2/ASC speck thus identifying the AIM2/ASC complex as a novel caspase-8 activation platform. Furthermore, we demonstrate that caspase-1-independent apoptosis requires the activation of caspase-9 and of the intrinsic pathway in a typical type II cell manner. Finally, we identify the AIM2/ASC-dependent caspase-1-independent pathway as an innate immune mechanism able to restrict bacterial replication in vitro and control IFN-γ levels in vivo in Casp1(KO) mice. This work underscores the crosstalk between inflammasome components and the apoptotic machinery and highlights the versatility of the pathway, which can switch from pyroptosis to apoptosis.  相似文献   

17.
Pyroptosis is a caspase-1-dependent inflammatory form of cell death. The adapter protein ASC binds directly to caspase-1 and is critical for caspase-1 activation in response to a broad range of stimuli. To elucidate the mechanism of activation of caspase-1 by ASC and its exact role in macrophage pyroptosis, we performed time-lapse confocal bioimaging analysis on human THP-1 macrophages stably expressing an ASC-GFP fusion protein. We show that stimulation of these cells with several proinflammatory stimuli trigger the formation of a large supramolecular assembly of ASC, termed here pyroptosome. Only one distinct pyroptosome in each stimulated cell is formed, which rapidly recruits and activates caspase-1 resulting in pyroptosis and the release of the intracellular proinflammatory cytokines. The pyroptosome is largely composed of oligomerized ASC dimers. Dimerization of ASC is driven by subphysiological concentrations of potassium as in vitro incubation of purified recombinant ASC in the presence of subphysiological concentrations of potassium induces the assembly of a functional pyroptosome. Furthermore, stimulation of potassium efflux in THP-1 cells with potassium-depleting agents induces formation of the pyroptosome, while increasing potassium concentrations in the culture medium or pharmacological inhibition of this efflux inhibits its assembly. Our results establish that macrophage pyroptosis is mediated by a unique pyroptosome, distinct from the inflammasome.  相似文献   

18.
ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis   总被引:13,自引:0,他引:13  
ASC is a pro-apoptotic protein containing a pyrin domain (PD) and a caspase-recruitment domain (CARD). A previous study suggests that ASC interacts with Ipaf, a member of the Apaf-1/Nod1 protein family. However, the functional relevance of the interaction has not been determined. Here, we report that co-expression of ASC with Ipaf or oligomerization of ASC induces both apoptosis and NF-kappa B activation. Apoptosis induced through ASC was inhibited by a mutant form of Caspase-8 but not by that of Caspase-1. The PD of ASC physically interacted with Caspase-8 as well as with pyrin, the familial Mediterranean fever gene product. Caspase-8 deficiency rescued mouse fibroblasts from apoptosis induced by ASC oligomerization. Pyrin disrupted the interaction between ASC and Caspase-8, and inhibited both apoptosis and NF-kappa B activation induced by ASC. These findings suggest that ASC is a mediator of NF-kappa B activation and Caspase-8-dependent apoptosis in an Ipaf signaling pathway.  相似文献   

19.
Listeria monocytogenes escapes from the phagosome of macrophages and replicates within the cytosolic compartment. The macrophage responds to L. monocytogenes through detection pathways located on the cell surface (TLRs) and within the cytosol (Nod-like receptors) to promote inflammatory processes aimed at clearing the pathogen. Cytosolic L. monocytogenes activates caspase 1, resulting in post-translational processing of the cytokines IL-1beta and IL-18 as well as caspase 1-dependent cell death (pyroptosis). We demonstrate that the presence of L. monocytogenes within the cytosolic compartment induces caspase 1 activation through multiple Nod-like receptors, including Ipaf and Nalp3. Flagellin expression by cytosolic L. monocytogenes was detected through Ipaf in a dose-dependent manner. Concordantly, detection of flagellin promoted bacterial clearance in a murine infection model. Finally, we provide evidence that suggests cytosolic L. monocytogenes activates caspase 1 through a third pathway, which signals through the adaptor protein ASC. Thus, L. monocytogenes activates caspase 1 in macrophages via multiple pathways, all of which detect the presence of bacteria within the cytosol.  相似文献   

20.
Listeria monocytogenes (LM) infection induces pyroptosis, a form of regulated necrosis, in host macrophages via inflammasome activation. Here, we examined the role of Mint3 in macrophages, which promotes glycolysis via hypoxia-inducible factor-1 activation, during the initiation of pyroptosis following LM infection. Our results showed that Mint3-deficient mice were more resistant to lethal listeriosis than wild-type (WT) mice. Additionally, the mutant mice showed higher levels of IL-1β/IL-18 in the peritoneal fluid during LM infection than WT mice. Moreover, ablation of Mint3 markedly increased the activation of caspase-1, maturation of gasdermin D, and pyroptosis in macrophages infected with LM in vitro, suggesting that Mint3 depletion promotes pyroptosis. Further analyses revealed that Mint3 depletion upregulates inflammasome assembly preceding pyroptosis via glycolysis reduction and reactive oxygen species production. Pharmacological inhibition of glycolysis conferred resistance to listeriosis in a Mint3-dependent manner. Moreover, Mint3-deficient mice treated with the caspase-1 inhibitor VX-765 were as susceptible to LM infection as WT mice. Taken together, these results suggest that Mint3 depletion promotes pyroptosis in host macrophages, thereby preventing the spread of LM infection. Mint3 may serve as a target for treating severe listeriosis by inducing pyroptosis in LM-infected macrophages.Subject terms: Cell death, Infection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号