首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Vitamin D Receptor (VDR) is a member of the nuclear receptor superfamily and is of therapeutic interest in cancer and other settings. Regulation of microRNA (miRNA) by the VDR appears to be important to mediate its actions, for example, to control cell growth. To identify if and to what extent VDR-regulated miRNA patterns change in prostate cancer progression, we undertook miRNA microarray analyses in 7 cell models representing non-malignant and malignant prostate cells (RWPE-1, RWPE-2, HPr1, HPr1AR, LNCaP, LNCaP-C4–2, and PC-3). To focus on primary VDR regulatory events, we undertook expression analyses after 30 minutes treatment with 1α,25(OH)2D3. Across all models, 111 miRNAs were significantly modulated by 1α,25(OH)2D3 treatment. Of these, only 5 miRNAs were modulated in more than one cell model, and of these, only 3 miRNAs were modulated in the same direction. The patterns of miRNA regulation, and the networks they targeted, significantly distinguished the different cell types. Integration of 1α,25(OH)2D3-regulated miRNAs with published VDR ChIP-seq data showed significant enrichment of VDR peaks in flanking regions of miRNAs. Furthermore, mRNA and miRNA expression analyses in non-malignant RWPE-1 cells revealed patterns of miRNA and mRNA co-regulation; specifically, 13 significant reciprocal patterns were identified and these patterns were also observed in TCGA prostate cancer data. Lastly, motif search analysis revealed differential motif enrichment within VDR peaks flanking mRNA compared to miRNA genes. Together, this study revealed that miRNAs are rapidly regulated in a highly cell-type specific manner, and are significantly co-integrated with mRNA regulation.  相似文献   

2.
In non-malignant RWPE-1 prostate epithelial cells signaling by the nuclear receptor Vitamin D Receptor (VDR, NR1I1) induces cell cycle arrest through targets including CDKN1A (encodes p21((waf1/cip1))). VDR dynamically induced individual histone modification patterns at three VDR binding sites (R1, 2, 3) on the CDKN1A promoter. The magnitude of these modifications was specific to each phase of the cell cycle. For example, H3K9ac enrichment occurred rapidly only at R2, whereas parallel accumulation of H3K27me3 occurred at R1; these events were significantly enriched in G(1) and S phase cells, respectively. The epigenetic events appeared to allow VDR actions to combine with p53 to enhance p21((waf1/cip1)) activation further. In parallel, VDR binding to the MCM7 gene induced H3K9ac enrichment associated with rapid mRNA up-regulation to generate miR-106b and consequently regulate p21((waf1/cip1)) expression. We conclude that VDR binding site- and promoter-specific patterns of histone modifications combine with miRNA co-regulation to form a VDR-regulated feed-forward loop to control p21((waf1/cip1)) expression and cell cycle arrest. Dissection of this feed-forward loop in a non-malignant prostate cell system illuminates mechanisms of sensitivity and therefore possible resistance in prostate and other VDR responsive cancers.  相似文献   

3.
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) regulates osteoblasts through genomic and rapid membrane-mediated responses. Here we examined the interaction of protein disulfide isomerase family A, member 3 (Pdia3) and the traditional vitamin D receptor (VDR) in plasma membrane-associated responses to 1α,25(OH)2D3. We found that Pdia3 co-localized with VDR and the caveolae scaffolding protein, caveolin-1 on the surface of MC3T3-E1 osteoblasts. Immunoprecipitation showed that both Pdia3 and VDR interacted with caveolin-1. Pdia3 further interacted with phospholipase A2 activating protein (PLAA), whereas VDR interacted with c-Src. 1α,25(OH)2D3 changed the interactions and transport of the two receptors and rapidly activated phospholipase A2 (PLA2) and c-Src. Silencing either receptor or caveolin-1 inhibited both PLA2 and c-Src, indicating that the two receptors function interdependently. These two receptor dependent rapid responses to 1α,25(OH)2D3 regulated gene expression, proliferation and apoptosis of MC3T3-E1 cells. These data demonstrate the importance of both receptors and caveolin-1 in mediating membrane responses to 1α,25(OH)2D3 and subsequently regulating osteoblast biology.  相似文献   

4.
5.
6.
7.
Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has anti-cancer activity in several colon cancers. 1α,25(OH)2D3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH)2D3-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH)2D3. These results indicate that PIPKIIβ-mediated PI(4,5)P2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.  相似文献   

8.
9.
We have previously demonstrated that prostate carcinoma cells exposed to fractionated radiation differentially expressed more genes compared to single-dose radiation. To understand the role of miRNA in regulation of radiation-induced gene expression, we analyzed miRNA expression in LNCaP, PC3 and DU145 prostate cancer cells treated with single-dose radiation and fractionated radiation by microarray. Selected miRNAs were studied in RWPE-1 normal prostate epithelial cells by RT-PCR. Fractionated radiation significantly altered more miRNAs as compared to single-dose radiation. Downregulation of oncomiR-17-92 cluster was observed only in the p53 positive LNCaP and RWPE-1 cells treated with single-dose radiation and fractionated radiation. Comparison of miRNA and mRNA data by IPA target filter analysis revealed an inverse correlation between miR-17-92 cluster and several targets including TP53INP1 in p53 signaling pathway. The base level expressions of these miRNAs were significantly different among the cell lines and did not predict the radiation outcome. Tumor suppressor miR-34a and let-7 miRNAs were upregulated by fractionated radiation in radiosensitive LNCaP (p53 positive) and PC3 (p53-null) cells indicating that radiation-induced miRNA expression may not be regulated by p53 alone. Our data support the potential for using fractionated radiation to induce molecular targets and radiation-induced miRNAs may have a significant role in predicting radiosensitivity.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Sebocytes are sebum-producing cells that form the sebaceous glands. We investigated the role of sebocytes as target cells for vitamin D metabolites and the existence of an enzymatic machinery for the local synthesis and metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3, calcitriol], the biologically active vitamin D metabolite, in these cell types. Expression of vitamin D receptor (VDR), vitamin D-25-hydroxylase (25OHase), 25-hydroxyvitamin D-1α-hydroxylase (1αOHase), and 1,25-dihydroxyvitamin D-24-hydroxylase (24OHase) was detected in SZ95 sebocytes in vitro using real time quantitative polymerase chain reaction. Splice variants of 1αOHase were identified by nested touchdown polymerase chain reaction. We demonstrated that incubation of SZ95 sebocytes with 1,25(OH)2D3 resulted in a cell culture condition-, time-, and dose-dependent modulation of cell proliferation, cell cycle regulation, lipid content and interleukin-6/interleukin-8 secretion in vitro. RNA expression of VDR and 24OHase was upregulated along with vitamin D analogue treatment. Although several other splice variants of 1αOHase were detected, our findings indicate that the full length product represents the major 1αOHase gene product in SZ95 cells. In conclusion, SZ95 sebocytes express VDR and the enzymatic machinery to synthesize and metabolize biologically active vitamin D analogues. Sebocytes represent target cells for biologically active metabolites. Our findings indicate that the vitamin D endocrine system is of high importance for sebocyte function and physiology. We conclude that sebaceous glands represent potential targets for therapy with vitamin D analogues or for pharmacological modulation of 1,25(OH)2D3 synthesis/metabolism.  相似文献   

18.
The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.  相似文献   

19.
20.
The effects of 1α,25(OH)2vitamin D3 on cell growth and differentiation are primarily mediated by the nuclear vitamin D receptor (VDR). In order to study aspects of receptor function and ultimately the structural basis of the VDR-ligand interaction, it is necessary to produce large quantities of purified VDR. To achieve this, we have expressed the human VDR and its ligand binding domain in E. coli as fusion proteins with the maltose binding protein using the expression vector pMal-c2. In this system high level expression of both fusion proteins in a soluble form was achieved, whereas previous attempts to express the VDR in E. coli have resulted in an insoluble product. After affinity purification on amylose resin, the fusion proteins were isolated with yields of 10–20 mg/l of culture. Both forms of the recombinant receptor bound 1α,25(OH)2vitamin D3 with high affinity; estimated Kd values from Scatchard analysis for the purified full-length receptor and the ligand binding domain were 0.16 ± 0.07 nM and 0.04 ± 0.02 nM, respectively. The nonhypercalcemic analogs of vitamin D, MC903 and Δ22-1,25S,26(OH)3vitamin D3, bound the recombinant fusion proteins with a similar affinity to the native ligand, 1α,25(OH)2vitamin D3. In addition, the full-length VDR fusion protein was shown by gel shift analysis to bind weakly to the human osteocalcin gene vitamin D response element, an interaction greatly facilitated by addition of RXRα. These results show that the bacterial expression system detailed here is readily able to produce soluble and functional VDR and its ligand binding domain in high yield. These proteins are easily purified and should be suitable for further structural and functional analysis. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号