首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.  相似文献   

2.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   

3.
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.  相似文献   

4.
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.  相似文献   

5.
Degradation of mitochondria via selective autophagy, termed mitophagy, contributes to mitochondrial quality and quantity control whose defects have been implicated in oxidative phosphorylation deficiency, aberrant cell differentiation, and neurodegeneration. How mitophagy is regulated in response to cellular physiology remains obscure. Here, we show that mitophagy in yeast is linked to the phospholipid biosynthesis pathway for conversion of phosphatidylethanolamine to phosphatidylcholine by the two methyltransferases Cho2 and Opi3. Under mitophagy‐inducing conditions, cells lacking Opi3 exhibit retardation of Cho2 repression that causes an anomalous increase in glutathione levels, leading to suppression of Atg32, a mitochondria‐anchored protein essential for mitophagy. In addition, loss of Opi3 results in accumulation of phosphatidylmonomethylethanolamine (PMME) and, surprisingly, generation of Atg8–PMME, a mitophagy‐incompetent lipid conjugate of the autophagy‐related ubiquitin‐like modifier. Amelioration of Atg32 expression and attenuation of Atg8–PMME conjugation markedly rescue mitophagy in opi3‐null cells. We propose that proper regulation of phospholipid methylation is crucial for Atg32‐mediated mitophagy.  相似文献   

6.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

7.
Zhiyuan Yao 《Autophagy》2016,12(11):1971-1972
Many vital metabolic pathways take place in mitochondria, but some of the associated processes generate toxic substances including reactive oxygen species that can damage proteins and DNA. Therefore, it is critical to maintain normally functioning mitochondria to achieve proper cellular homeostasis. Along these lines, mitochondrial dysfunction is associated with numerous diseases, and mitochondria quality control is essential for cell survival. The maintenance of functioning mitochondria is particularly important in aging cells, and there is a strong relationship between cellular aging and dysfunctional mitochondria. The best characterized pathway that is responsible for the elimination of damaged mitochondria is mitophagy, a selective type of autophagy. In yeast, mitophagy requires the mitochondrial protein Atg32 to serve as a receptor for recognition and sequestration by a phagophore. Although conventional mitophagy has been extensively studied, recent research suggests that an unconventional pathway, which is independent of Atg32, contributes to the removal of mitochondria.  相似文献   

8.
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson’s disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein. A lack of structural information for Atg32 has hindered our understanding of the molecular mechanisms of mitophagy initiation. To gain new structural insight into Atg32, we have identified the location of a structured domain within the cytosolic region of Atg32 and completed the backbone and side chain resonance assignments for this domain.  相似文献   

9.
Selective autophagy of bacterial pathogens represents a host innate immune mechanism. Selective autophagy has been characterized on the basis of distinct cargo receptors but the mechanisms by which different cargo receptors are targeted for autophagic degradation remain unclear. In this study we identified a highly conserved Tectonin domain-containing protein, Tecpr1, as an Atg5 binding partner that colocalized with Atg5 at Shigella-containing phagophores. Tecpr1 activity is necessary for efficient autophagic targeting of bacteria, but has no effect on rapamycin- or starvation-induced canonical autophagy. Tecpr1 interacts with WIPI-2, a yeast Atg18 homolog and PI(3)P-interacting protein required for phagophore formation, and they colocalize to phagophores. Although Tecpr1-deficient mice appear normal, Tecpr1-deficient MEFs were defective for selective autophagy and supported increased intracellular multiplication of Shigella. Further, depolarized mitochondria and misfolded protein aggregates accumulated in the Tecpr1-knockout MEFs. Thus, we identify a Tecpr1-dependent pathway as important in targeting bacterial pathogens for selective autophagy.  相似文献   

10.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

11.
Atg8-family interacting motif crucial for selective autophagy   总被引:1,自引:0,他引:1  
Autophagy is a bulk degradation system conserved among most eukaryotes. Recently, autophagy has been shown to mediate selective degradation of various targets such as aggregated proteins and damaged or superfluous organelles. Structural studies have uncovered the conserved specific interactions between autophagic receptors and Atg8-family proteins through WXXL-like sequences, which we term the Atg8-family interacting motif (AIM). AIM functions in various autophagic receptors such as Atg19 in the cytoplasm-to-vacuole targeting pathway, p62 and neighbor of BRCA1 gene 1 (NBR1) in autophagic degradation of protein aggregates, and Atg32 and Nix in mitophagy, and may link the target-receptor complex to autophagic membranes and/or their forming machineries.  相似文献   

12.
Mitophagy is an evolutionarily conserved autophagy pathway that selectively degrades mitochondria. Although it is well established that this degradation system contributes to mitochondrial quality and quantity control, mechanisms underlying mitophagy remain largely unknown. Here, we report that protein N-terminal acetyltransferase A (NatA), an enzymatic complex composed of the catalytic subunit Ard1 and the adaptor subunit Nat1, is crucial for mitophagy in yeast. NatA is associated with the ribosome via Nat1 and acetylates the second amino acid residues of nascent polypeptides. Mitophagy, but not bulk autophagy, is strongly suppressed in cells lacking Ard1, Nat1, or both proteins. In addition, loss of NatA enzymatic activity causes impairment of mitochondrial degradation, suggesting that protein N-terminal acetylation by NatA is important for mitophagy. Ard1 and Nat1 mutants exhibited defects in induction of Atg32, a protein essential for mitophagy, and formation of mitochondria-specific autophagosomes. Notably, overexpression of Atg32 partially recovered mitophagy in NatA-null cells, implying that this acetyltransferase participates in mitophagy at least in part via Atg32 induction. Together, our data implicate NatA-mediated protein modification as an early regulatory step crucial for efficient mitophagy.  相似文献   

13.
Mitochondria are targeted for degradation by mitophagy, a selective form of autophagy. In Saccharomyces cerevisiae, mitophagy is dependent on the autophagy receptor, Atg32, an outer mitochondrial membrane protein. Once activated, Atg32 recruits the autophagy machinery to mitochondria, facilitating mitochondrial capture in phagophores, the precursors to autophagosomes. However, the mechanism of Atg32 activation remains poorly understood. To investigate this crucial step in mitophagy regulation, we examined the structure of Atg32. We have identified a structured domain in Atg32 that is essential for the initiation of mitophagy, as it is required for the proteolysis of the C-terminal domain of Atg32 and the subsequent recruitment of Atg11. The solution structure of this domain was determined by NMR spectroscopy, revealing that Atg32 contains a previously undescribed pseudo-receiver (PsR) domain. Our data suggests that the PsR domain of Atg32 regulates Atg32 activation and the initiation of mitophagy.

Abbreviations:AIM: Atg8-interacting motif; GFP: green fluorescent protein; LIR: LC3-interacting region; NMR: nuclear magnetic resonance; NOESY: nuclear Overhauser effect spectroscopy; PDB: protein data bank; PsR: pseudo-receiver; RMSD: root-mean-square deviation  相似文献   


14.
The selective autophagy receptors Atg19 and Atg32 interact with two proteins of the core autophagic machinery: the scaffold protein Atg11 and the ubiquitin‐like protein Atg8. We found that the Pichia pastoris pexophagy receptor, Atg30, also interacts with Atg8. Both Atg30 and Atg32 interactions are regulated by phosphorylation close to Atg8‐interaction motifs. Extending this finding to Saccharomyces cerevisiae, we confirmed phosphoregulation for the mitophagy and pexophagy receptors, Atg32 and Atg36. Each Atg30 molecule must interact with both Atg8 and Atg11 for full functionality, and these interactions occur independently and not simultaneously, but rather in random order. We present a common model for the phosphoregulation of selective autophagy receptors.  相似文献   

15.
Autophagy is the major pathway for the delivery of cytoplasmic material to the vacuole or lysosome. Selective autophagy is mediated by cargo receptors, which link the cargo to the scaffold protein Atg11 and to Atg8 family proteins on the forming autophagosomal membrane. We show that the essential kinase Hrr25 activates the cargo receptor Atg19 by phosphorylation, which is required to link cargo to the Atg11 scaffold, allowing selective autophagy to proceed. We also find that the Atg34 cargo receptor is regulated in a similar manner, suggesting a conserved mechanism.  相似文献   

16.
《Autophagy》2013,9(6):808-809
Yeast Atg8, a key factor in the autophagic process, is a ubiquitin-like protein that undergoes a unique conjugation to phosphatidylethanolamine (PE). Atg8 plays a dual role in early stages of autophagosome formation: It was implicated in recruitment of cargo proteins such as Atg19 and Atg32 for Cvt and mitophagy, respectively, and in autophagosome biogenesis, serving as an elongation factor by mediating membrane hemi-fusion. Similarly, the mammalian Atg8 proteins, LC3s and GABARAPs, recruit cargo into autophagosomes by binding to adaptor proteins such as p62, NBR1 and Nix. These functions, however, are not essential for bulk autophagic flux. Other studies in which the activity of the mammalian Atg8s was blocked either by knockout of the E2-like enzyme Atg3 or by using a dominant negative mutant of the promiscuous protease Atg4B revealed, in agreement with the yeast Atg8 data, that the mammalian factors are crucial for the formation of normal and mature autophagosomes. While it seems that the single yeast Atg8 and the mammalian Atg8s share similar roles, it is still unclear why the mammalian system employs several homologs. Recent publications demonstrated that the mammalian Atg8s differ in their cargo specificity, as Nix, for example, binds exclusively to GABARAP-L1. This may suggest that these proteins exhibit distinct activity also in autophagosome biogenesis. In our study we divided the mammalian Atg8s into two subfamilies of homologs based on amino acid similarity, the LC3 and GABARAP/GATE-16 subfamilies, and tested their essentiality and role in autophagy. In agreement with previous studies we found that the mammalian Atg8s are essential for autophagy but, more importantly, that each of these subfamilies has a distinct role in the process of autophagosome biogenesis.  相似文献   

17.
Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae.  相似文献   

18.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase‐deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32–Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.  相似文献   

19.
《Autophagy》2013,9(4):461-471
Autophagy is a highly conserved degradation pathway for intracellular macromolecules and organelles. Among those characterized autophagy regulators, the ubiquitin-like protein Atg8 is found to be a membrane modifier that both regulates biogenesis of transport vesicles and interacts with the cargo receptor Atg19 for selective autophagic transport of the vacuolar enzyme prApe1 in budding yeast. The role of Atg8 in the enlargement of vesicle membrane during autophagosome biogenesis has been well documented, but how Atg8 coordinates vesicle formation and sorting of selective cargo is largely unknown. Identification of the cargo-receptor binding site of Atg8 would provide information to solve this issue. Here we characterized Atg8 mutants that were defective in interaction with the prApe1 receptor Atg19 and found that the vesicle formation function of these Atg8 mutants was also compromised to different extents. Atg8 mutants with single-residue substitution at the Atg19-binding site were defective in lipid conjugation and/or subcellular localization. Additional Atg8 mutants were found defective in autophagosome formation without affecting their interaction with Atg19, suggesting partially overlapping of the cargo-sorting site and its domains critical for autophagy control. Our observation paves the road for a more comprehensive understanding on how Atg8 coordinates cargo sorting and vesicle formation in selective autophagic pathways.  相似文献   

20.
Abeliovich H 《Autophagy》2007,3(3):275-277
The degradation and recycling of mitochondria is an important household chore in eukaryotic cells. It is thought that mitochondrial autophagy, or mitophagy, is the major route by which mitochondria are degraded. In this view, the cell would selectively induce mitophagy to expunge malfunctioning mitochondria, thus ridding the cell of troublesome sources of reactive oxygen species, apoptosis-inducing factors, or unnecessary metabolic burden. This standard view of mitophagy, in addition to some experimental reports, points to a pro-survival role of mitophagy. However, there is also a significant amount of evidence that suggests a pro-death role of this process, some of it coming from studies in yeast. Aup1 is a protein phosphatase homolog that shows a genetic interaction with the Atg1 protein kinase, localizes to mitochondria, and is required for mitophagy under stationary phase conditions in lactate medium. In contrast with previous yeast studies on mitophagy, deletion of AUP1 results in decreased viability under mitophagy-inducing conditions, suggesting a pro-survival role under physiologically relevant conditions. Thus, the Janus-faced nature of mitophagy is conserved between yeast and mammalian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号