首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoon SY  Ha YE  Choi JE  Ahn J  Lee H  Kweon HS  Lee JY  Kim DH 《Journal of virology》2008,82(23):11976-11978
Coxsackievirus is the most important cause of meningitis and encephalitis in infants; an infection is sometimes fatal or may lead to neurodevelopmental defects. Here, we show that coxsackievirus B4 (CVB4) induces an autophagy pathway for replication in rat primary neurons. Notably, calpain inhibitors reduce autophagosome formation. Conversely, the inhibition of the autophagy pathway with 3-methyladenine inhibits calpain activation. This work reveals, for the first time, that calpain is essential for the autophagy pathway and viral replication in CVB4-infected neurons.  相似文献   

2.
Wong J  Zhang J  Si X  Gao G  Mao I  McManus BM  Luo H 《Journal of virology》2008,82(18):9143-9153
Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We demonstrate that CVB3 infection induces an increased number of double-membrane vesicles, accompanied by an increase of the LC3-II/LC3-I ratio and an accumulation of punctate GFP-LC3-expressing cells, two hallmarks of cellular autophagosome formation. However, protein expression analysis of p62, a marker for autophagy-mediated protein degradation, showed no apparent changes after CVB3 infection. These results suggest that CVB3 infection triggers autophagosome formation without promoting protein degradation by the lysosome. We further examined the role of the autophagosome in CVB3 replication. We demonstrated that inhibition of autophagosome formation by 3-methyladenine or small interfering RNAs targeting the genes critical for autophagosome formation (ATG7, Beclin-1, and VPS34 genes) significantly reduced viral replication. Conversely, induction of autophagy by rapamycin or nutrient deprivation resulted in increased viral replication. Finally, we examined the role of autophagosome-lysosome fusion in viral replication. We showed that blockage of the fusion by gene silencing of the lysosomal protein LAMP2 significantly promoted viral replication. Taken together, our results suggest that the host's autophagy machinery is activated during CVB3 infection to enhance the efficiency of viral replication.  相似文献   

3.
4.
Calpains are calcium-activated neutral cysteine proteases. The dysregulation of calpain activity has been found to be related to cardiovascular diseases, for which calpain inhibition is used as a treatment. Viral myocarditis (VMC) is primarily caused by Coxsackievirus group B3 virus infection (CVB3). CVB3 virus infection induces autophagy and hijacks this process to facilitate its replication. In this study, we found that calpain was significantly activated in hearts affected by VMC. However, pharmacologically inhibiting calpain aggravated VMC symptoms in mice due to myocardial inflammation and cardiac dysfunction. The inhibition of calpain activity in vitro led to the accumulation of LC3-II and increased levels of p62/SQSTM1 protein expression, suggesting that autophagic flux was impaired by calpain inhibition. These effects of calpain inhibition were also observed in capn4-specific myocardial knockout mice in vivo. Furthermore, our results provided evidence that calpain inhibition in VMC, unlike other cardiovascular diseases, exacerbated the disease symptom by impairing CVB3-induced autophagic flux, which may subsequently reduce virus autolysosome degradation. Our findings indicated that calpain inhibition may not be a good treatment for VMC disease in a clinical setting.  相似文献   

5.
Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.  相似文献   

6.
《Autophagy》2013,9(3):321-328
Autophagy is involved in the replication of viruses, especially those that perform RNA assembly on the surface of cytoplasmic membrane in host cells. However, little is known about the regulatory role of autophagy in influenza A virus replication. Using fluorescence and electron microscopy, we observed that autophagosomes can be induced and identified upon influenza A virus infection. The virus increased the amount of the autophagosome marker protein microtubule-associated protein light chain 3-II (LC3-II) and enhanced autophagic flux. When autophagy was pharmacologically inhibited by either 3-methylademine or wortmannin, the titers of influenza A virus were remarkably decreased. Viral reduction via autophagy inhibition was further confirmed by RNA interference, through which two different proteins required for autophagy were depleted. Noticeably, the compounds utilized had no marked effect on virus entry or cell viability, either of which might limit viral replication. Furthermore, alteration of cellular autophagy via pharmacological reagents or RNA interference impaired viral protein accumulation. Taken together, these findings indicate that autophagy is actively involved in influenza A virus replication.  相似文献   

7.
《Autophagy》2013,9(6):973-975
Autophagy plays a protective role during many viral and bacterial infections. Predictably, evolution has led to several viruses developing mechanisms by which to evade the inhibitory effects of the pathway. However, one family of viruses, the picornaviruses, has gone one step further, by actively exploiting autophagy. Using mice in which Atg5 has been conditionally deleted in pancreatic acinar cells, we have studied the outcome of infection by coxsackievirus B3 (CVB3), a member of the enterovirus genus and picornavirus family. Two key findings emerged: disruption of autophagy (1) dramatically compromised virus replication in vivo, and (2) significantly limited pancreatic disease.  相似文献   

8.
Autophagy plays a protective role during many viral and bacterial infections. Predictably, evolution has led to several viruses developing mechanisms by which to evade the inhibitory effects of the pathway. However, one family of viruses, the picornaviruses, has gone one step further, by actively exploiting autophagy. Using mice in which Atg5 has been conditionally deleted in pancreatic acinar cells, we have studied the outcome of infection by coxsackievirus B3 (CVB3), a member of the enterovirus genus and picornavirus family. Two key findings emerged: disruption of autophagy (1) dramatically compromised virus replication in vivo, and (2) significantly limited pancreatic disease.  相似文献   

9.
Li J  Liu Y  Wang Z  Liu K  Wang Y  Liu J  Ding H  Yuan Z 《Journal of virology》2011,85(13):6319-6333
Autophagy is a conserved eukaryotic mechanism that mediates the removal of long-lived cytoplasmic macromolecules and damaged organelles via a lysosomal degradative pathway. Recently, a multitude of studies have reported that viral infections may have complex interconnections with the autophagic process. The findings reported here demonstrate that hepatitis B virus (HBV) can enhance the autophagic process in hepatoma cells without promoting protein degradation by the lysosome. Mutation analysis showed that HBV small surface protein (SHBs) was required for HBV to induce autophagy. The overexpression of SHBs was sufficient to induce autophagy. Furthermore, SHBs could trigger unfolded protein responses (UPR), and the blockage of UPR signaling pathways abrogated the SHB-induced lipidation of LC3-I. Meanwhile, the role of the autophagosome in HBV replication was examined. The inhibition of autophagosome formation by the autophagy inhibitor 3-methyladenine (3-MA) or small interfering RNA duplexes targeting the genes critical for autophagosome formation (Beclin1 and ATG5 genes) markedly inhibited HBV production, and the induction of autophagy by rapamycin or starvation greatly contributed to HBV production. Furthermore, evidence was provided to suggest that the autophagy machinery was required for HBV envelopment but not for the efficiency of HBV release. Finally, SHBs partially colocalized and interacted with autophagy protein LC3. Taken together, these results suggest that the host's autophagy machinery is activated during HBV infection to enhance HBV replication.  相似文献   

10.
ABSTRACT

Macroautophagy/autophagy is a host natural defense response. Viruses have developed various strategies to subvert autophagy during their life cycle. Recently, we revealed that autophagy was activated by binding of Avibirnavirus to cells. In the present study, we report the inhibition of autophagy initiated by PIK3C3/VPS34 via the PDPK1-dependent AKT-MTOR pathway. Autophagy detection revealed that viral protein VP3 triggered inhibition of autophagy at the early stage of Avibirnavirus replication. Subsequent interaction analysis showed that the CC1 domain of VP3 disassociated PIK3C3-BECN1 complex by direct interaction with BECN1 and blocked autophagosome formation, while the CC3 domain of VP3 disrupted PIK3C3-PDPK1 complex via directly binding to PIK3C3 and inhibited both formation and maturation of autophagosome. Furthermore, we found that PDPK1 activated AKT-MTOR pathway for suppressing autophagy via binding to AKT. Finally, we proved that CC3 domain was critical for role of VP3 in regulating replication of Avibirnavirus through autophagy. Taken together, our study identified that Avibirnavirus VP3 links PIK3C3-PDPK1 complex to AKT-MTOR pathway and inhibits autophagy, a critical step for controlling virus replication.  相似文献   

11.
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resulting in increased extracellular virus production. Moreover, expression of CA16 nonstructural proteins 2C and 3C was sufficient to trigger autophagosome accumulation by blocking the fusion of autophagosomes with lysosomes. Interestingly, we found that Immunity-related GTPase family M (IRGM) was crucial for the activation of CA16 infection-induced autophagy; in turn, reducing IRGM expression suppressed autophagy. Expression of viral protein 2C enhanced IRGM promoter activation, thereby increasing IRGM expression and inducing autophagy. CA16 infection inhibited Akt/mTOR signaling and activated extracellular signal-regulated kinase (ERK) signaling, both of which are necessary for autophagy induction. In summary, CA16 can use autophagy to enhance its own replication. These results raise the possibility of targeting the autophagic pathway for the treatment of hand, foot, and mouth disease (HFMD).  相似文献   

12.

Background

Enterovirus 71 (EV71) is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear.

Methodology/Principal Findings

In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A) cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II and degradation of sequestosome 1 (SQSTM1/P62). Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles.

Conclusions/Significance

In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.  相似文献   

13.
Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang‐Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin‐induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin‐induced autophagy had interference on the process of apoptosis. Wogonin‐induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)‐stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin‐mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V‐positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin‐mediated apoptosis, whereas inhibition of autophagy by 3‐methyladenine (3‐MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI3K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin‐induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin‐induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. J. Cell. Biochem. 113: 3476–3485, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Autophagy protects against many infections by inducing the lysosomal-mediated degradation of invading pathogens. However, previous in?vitro studies suggest that some enteroviruses not only evade these protective effects but also exploit autophagy to facilitate their replication. We generated Atg5(f/f)/Cre(+) mice, in which the essential autophagy gene Atg5 is specifically deleted in pancreatic acinar cells, and show that coxsackievirus B3 (CVB3) requires autophagy for optimal infection and pathogenesis. Compared to Cre(-) littermates, Atg5(f/f)/Cre(+) mice had an ~2,000-fold lower CVB3 titer in the pancreas, and pancreatic pathology was greatly diminished. Both in?vivo and in?vitro, Atg5(f/f)/Cre(+) acinar cells had reduced intracellular viral RNA and?proteins. Furthermore, intracellular structural elements induced upon CVB3 infection, such as compound membrane vesicles and highly geometric paracrystalline arrays, which may represent viral replication platforms, were infrequently observed in?infected Atg5(f/f)/Cre(+) cells. Thus, CVB3-induced subversion of autophagy not only benefits the virus but also exacerbates pancreatic pathology.  相似文献   

15.
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.  相似文献   

16.
Autophagy is a cellular process that sequesters cargo in double-membraned vesicles termed autophagosomes and delivers this cargo to lysosomes to be degraded. It is enhanced during nutrient starvation to increase the rate of amino acid turnover. Diverse roles for autophagy have been reported for viral infections, including the assembly of viral replication complexes on autophagic membranes and protection of host cells from cell death. Here, we show that autophagosomes accumulate in Semliki Forest virus (SFV)-infected cells. Despite this, disruption of autophagy had no effect on the viral replication rate or formation of viral replication complexes. Also, viral proteins rarely colocalized with autophagosome markers, suggesting that SFV did not utilize autophagic membranes for its replication. Further, we found that SFV infection, unlike nutrient starvation, did not inactivate the constitutive negative regulator of autophagosome formation, mammalian target of rapamycin, suggesting that SFV-dependent accumulation of autophagosomes was not a result of enhanced autophagosome formation. In starved cells, addition of NH(4)Cl, an inhibitor of lysosomal acidification, caused a dramatic accumulation of starvation-induced autophagosomes, while in SFV-infected cells, NH(4)Cl did not further increase levels of autophagosomes. These results suggest that accumulation of autophagosomes in SFV-infected cells is due to an inhibition of autophagosome degradation rather than enhanced rates of autophagosome formation. Finally, we show that the accumulation of autophagosomes in SFV-infected cells is dependent on the expression of the viral glycoprotein spike complex.  相似文献   

17.
Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation.  相似文献   

18.
RNA viruses modify intracellular membranes to produce replication scaffolds. In pancreatic cells, coxsackievirus B3 (CVB3) hijacks membranes from the autophagy pathway, and in vivo disruption of acinar cell autophagy dramatically delays CVB3 replication. This is reversed by expression of GFP-LC3, indicating that CVB3 may acquire membranes from an alternative, autophagy-independent, source(s). Herein, using 3 recombinant CVB3s (rCVB3s) encoding different proteins (proLC3, proLC3G120A, or ATG4BC74A), we show that CVB3 is, indeed, flexible in its utilization of cellular membranes. When compared with a control rCVB3, all 3 viruses replicated to high titers in vivo, and caused severe pancreatitis. Most importantly, each virus appeared to subvert membranes in a unique manner. The proLC3 virus produced a large quantity of LC3-I which binds to phosphatidylethanolamine (PE), affording access to the autophagy pathway. The proLC3G120A protein cannot attach to PE, and instead binds to the ER-resident protein SEL1L, potentially providing an autophagy-independent source of membranes. Finally, the ATG4BC74A protein sequestered host cell LC3-I, causing accumulation of immature phagophores, and massive membrane rearrangement. Taken together, our data indicate that some RNA viruses can exploit a variety of different intracellular membranes, potentially maximizing their replication in each of the diverse cell types that they infect in vivo.  相似文献   

19.
《Autophagy》2013,9(8):1426-1441
Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation.  相似文献   

20.
Autophagy is an essential component of host immunity and used by viruses for survival. However, the autophagy signaling pathways involved in virus replication are poorly documented. Here, we observed that rabies virus (RABV) infection triggered intracellular autophagosome accumulation and results in incomplete autophagy by inhibiting autophagy flux. Subsequently, we found that RABV infection induced the reduction of CASP2/caspase 2 and the activation of AMP-activated protein kinase (AMPK)-AKT-MTOR (mechanistic target of rapamycin) and AMPK-MAPK (mitogen-activated protein kinase) pathways. Further investigation revealed that BECN1/Beclin 1 binding to viral phosphoprotein (P) induced an incomplete autophagy via activating the pathways CASP2-AMPK-AKT-MTOR and CASP2-AMPK-MAPK by decreasing CASP2. Taken together, our data first reveals a crosstalk of BECN1 and CASP2-dependent autophagy pathways by RABV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号