首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuk  Jae-Min  Jo  Eun-Kyeong 《Molecules and cells》2013,36(5):393-399
A variety of cellular stresses activate the autophagy pathway, which is fundamentally important in protection against injurious stimuli. Defects in the autophagy process are associated with a variety of human diseases, including inflammatory and metabolic diseases. The inflammasomes are emerging as key signaling platforms directing the maturation and secretion of interleukin-1 family cytokines in response to pathogenic and sterile stimuli. Recent studies have identified the critical role of inflammasome activation in host defense and inflammation. Delineation of the relationship between autophagy and inflammasome activation is now being greatly facilitated by the use of mice models of autophagy gene deficiency and clinical studies. We surveyed the recent research regarding the contribution of autophagy to the control of inflammation, in particular the association between autophagy and inflammasomes. Understanding the mechanisms by which autophagy balances inflammation might facilitate the development of autophagy-based therapeutic modalities for infectious and inflammatory diseases.  相似文献   

2.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

3.
《Molecular cell》2023,83(2):281-297.e10
  1. Download : Download high-res image (333KB)
  2. Download : Download full-size image
  相似文献   

4.
Tobacco smoking is one of the most important risk factors for chronic obstructive pulmonary disease (COPD). However, the most critical genes and proteins remain poorly understood. Therefore, we aimed to investigate these hub genes and proteins in tobacco smoke-induced COPD, together with the potential mechanism(s). Differentially expressed genes (DEGs) were analysed between smokers and patients with COPD. mRNA expression and protein expression of IP3R were confirmed in patients with COPD and extracted smoke solution (ESS)-treated human bronchial epithelial (HBE) cells. Moreover, expression of oxidative stress, inflammatory cytokines and/or autophagy-related protein was tested when IP3R was silenced or overexpressed in ESS-treated and/or 3-MA-treated cells. A total of 30 DEGs were obtained between patients with COPD and smoker samples. IP3R was identified as one of the key targets in tobacco smoke-induced COPD. In addition, IP3R was significantly decreased in patients with COPD and ESS-treated cells. Loss of IP3R statistically increased expression of oxidative stress and inflammatory cytokines in ESS-treated HBE cells, and overexpression of IP3R reversed the above functions. Furthermore, the autophagy-related proteins (Atg5, LC3 and Beclin1) were statistically decreased, and p62 was increased by silencing of IP3R cells, while overexpression of IP3R showed contrary results. Additionally, we detected that administration of 3-MA significantly reversed the protective effects of IP3R overexpression on ESS-induced oxidative stress and inflammatory injury. Our results suggest that IP3R might exert a protective role against ESS-induced oxidative stress and inflammation damage in HBE cells. These protective effects might be associated with promoting autophagy.  相似文献   

5.
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol‐induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol‐mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long‐term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol‐induced down‐regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1‐dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.  相似文献   

6.
NLRP3 inflammasome is a multiprotein complex that can sense several stimuli such as autophagy dysregulation and increased reactive oxygen species production stimulating inflammation by priming the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 in their active form. In the aging brain, these cytokines can mediate the innate immunity response priming microglial activation. Here, we describe the results of immunohistochemical and molecular analysis carried out on bovine brains. Our results support the hypothesis that the age-related impairment in cellular housekeeping mechanisms and the increased oxidative stress can trigger the inflammatory danger sensor NLRP3. Moreover, according to the recent scientific literature, we demonstrate the presence of an age-related proinflammatory environment in aged brains consisting in an upregulation of interleukin-1β, an increased microglial activation and increased NLRP3 expression. Finally, we suggest that bovine may potentially be a pivotal animal model for brain aging studies.  相似文献   

7.
Hydroxytyrosol (HT), a primary phenolic antioxidant in olive oil, can afford protection from oxidative stress (OS) in different cells, including skin cells. In particular, it regulates several inflammation‐associated processes as well as in improving the antioxidant defense system. However, there is no information about HT used in the treatment of hair loss. This work aimed at exploring the potential protective actions of HT against OS in rat dermal papilla cells. After treatment, the related expression of protein and messenger RNA were detected using morphological and molecular analyses. The results showed that HT significantly reduced intracellular reactive oxygen species level, apoptotic markers and inflammation induced by OS and enhanced cell survival by regulating autophagy. Furthermore, HT enhanced the secretion of hair growth factors in the anti‐inflammation process. These results suggest that HT has a significant protective ability against OS and encourage the use of this biological ingredient as a possible tool to prevent alopecia.  相似文献   

8.
目的:观察α-亚麻酸(ALA)对糖尿病大鼠体内炎症介质和氧化应激的影响,探讨ALA在糖尿病防治中的作用。方法:雄性SD大鼠高脂饮食喂养4周后,腹腔注射链脲佐菌素(STZ)30 mg/kg建立2型糖尿病(T2DM)模型。将大鼠随机分为3组(n=10):正常对照组、糖尿病模型组和ALA治疗组(500μg/kg.d)。4周后测定大鼠血清中肿瘤坏死因子(TNF-α)、可溶性P-选择素(sP-selectin)、可溶性细胞间黏附分子(sICAM-1)、一氧化氮(NO)、丙二醛(MDA)的含量以及超氧化物岐化酶(SOD)和过氧化氢酶(CAT)的活性。结果:与正常对照组相比,糖尿病大鼠血清中炎症介质TNF-α、sP-selectin和sICAM-1的含量增加,血清NO含量下降而MDA升高,同时抗氧化酶SOD和CAT的活性降低;ALA治疗可显著降低糖尿病大鼠血清中TNF-α、sP-selectin和sICAM-1的含量(与STZ+vehicle组相比,P<0.01),增加血清NO水平并减少MDA含量,升高抗氧化酶SOD和CAT的活性(与STZ+vehicle组相比,均P<0.05)。结论:ALA可显著降低糖尿病大鼠血清炎症介质的生成,减轻氧化应激水平,具有抗炎和抗氧化作用。提示ALA对糖尿病及糖尿病并发症的发生发展可能具有一定的防治作用。  相似文献   

9.
Autophagy, which is critical for the proper turnover of organelles such as endoplasmic reticulum and mitochondria, affects diverse aspects of metabolism, and its dysregulation has been incriminated in various metabolic disorders. However, the role of autophagy of myeloid cells in adipose tissue inflammation and type 2 diabetes has not been addressed. We produced mice with myeloid cell-specific deletion of Atg7 (autophagy-related 7), an essential autophagy gene (Atg7 conditional knockout [cKO] mice). While Atg7 cKO mice were metabolically indistinguishable from control mice, they developed diabetes when bred to ob/w mice (Atg7 cKO-ob/ob mice), accompanied by increases in the crown-like structure, inflammatory cytokine expression and inflammasome activation in adipose tissue. Mφs (macrophages) from Atg7 cKO mice showed significantly higher interleukin 1 β release and inflammasome activation in response to a palmitic acid plus lipopolysaccharide combination. Moreover, a decrease in the NAD+:NADH ratio and increase in intracellular ROS content after treatment with palmitic acid in combination with lipopolysaccharide were more pronounced in Mφs from Atg7 cKO mice, suggesting that mitochondrial dysfunction in autophagy-deficient Mφs leads to an increase in lipid-induced inflammasome and metabolic deterioration in Atg7 cKO-ob/ob mice. Atg7 cKO mice were more susceptible to experimental colitis, accompanied by increased colonic cytokine expression, T helper 1 skewing and systemic bacterial invasion. These results suggest that autophagy of Mφs is important for the control of inflammasome activation in response to metabolic or extrinsic stress, and autophagy deficiency in Mφs may contribute to the progression of metabolic syndrome associated with lipid injury and colitis.  相似文献   

10.
Previous studies in Graves’ orbitopathy (GO) patient-derived fibroblasts showed that inhibition of autophagy suppresses adipogenic differentiation. Autophagy activation is associated with inflammation, production of reactive oxygen species and fibrosis. Neferine is an alkaloid extracted from Nelumbo nucifera, which induces Nrf2 expression and inhibits autophagy. Here, we have elucidated the role of neferine on interleukin (IL)-13-induced autophagy using patient-derived orbital fibroblasts as an in vitro model of GO. GO patient-derived orbital fibroblasts were isolated and cultured to generate an in vitro model of GO. Autophagy was determined by Western blot detection of the markers such as Beclin-1, Atg-5 and LC3 and by immunofluorescence detection of autophagosome formation. Analysis of differentiation towards an adipogenic lineage was performed by Oil red O staining. The expression of inflammatory factors was detected by ELISA and semiquantitative RT-PCR. Neferine inhibited autophagy in GO orbital fibroblasts, as indicated by the suppression of IL-13-induced autophagosome formation, overexpression of autophagy markers, increased LC3-II/LC3-I levels and finally down-regulation of p62. Neferine suppressed IL-13-induced inflammation, ROS generation, fibrosis and adipogenic differentiation in GO patient-derived orbital fibroblasts. The anti-inflammatory, antioxidant and antiadipogenic effects of neferine were accompanied by the up-regulation of Nrf2. These results indicated that orbital tissue remodelling and inflammation in GO may be mediated by autophagy, and neferine suppressed autophagy-related inflammation and adipogenesis through a mechanism involving Nrf2.  相似文献   

11.
12.
目的 研究慢性PM2.5暴露对小鼠肺炎症和NLRP3炎性小体活性的影响,为防治PM2.5所致肺损伤提供新靶点。方法 雄性C57BL/6J小鼠通过不同剂量气管滴注法进行PM2.5染毒,剂量为2,10mg/(kg·bw),对照组小鼠滴注生理盐水。小鼠连续滴注20次,每3d染毒1次后,取血和肺组织。三组小鼠进行血细胞计数;用免疫荧光染色法检测肺组织巨噬细胞水平;用试剂盒测定肺组织中白细胞介素(interleukin,IL)-1β,IL-18水平及caspase-1活性;用实时定量PCR法检测肺组织NLRP3炎性小体相关mRNA表达水平。结果 两个剂量PM2.5染毒均能明显降低单核细胞百分比(P<0.01),增加中性粒白细胞百分比(P<0.01);导致肺炎症发生;增加肺组织caspase-1活性(P<0.01)及NLRP3和ASC的mRNA表达(P<0.01)。与对照组相比,两个剂量组小鼠肺组织IL-1β和IL-18水平均显著增高(P<0.01)。结论 慢性PM2.5暴露可能通过激活肺组织NLRP3炎性小体导致肺炎症发生。  相似文献   

13.
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.  相似文献   

14.
Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disease with severe inflammatory symptoms in the axial skeleton. The cause of ankylosing spondylitis is unknown. TNFAIP3, also named A20, uses ubiquitin-related functions to regulate immune activation, deficiency of which is highly related to autoimmune disease. However, the role of TNFAIP3 in human AS has not been reported. Our objective was to study the role and mechanism of TNFAIP3 in ankylosing spondylitis. TNFAIP3 expression on different types of immunocytes from AS peripheral blood was measured by flow cytometry. In vitro, monocytes were transfected with a TNFAIP3 shRNA lentivirus, and IL6 and IL1B activation was tested using real-time PCR and ELISA. The novel interaction complex TNFAIP3-DEPTOR was determined through GST pull-down, yeast two-hybrid system, confocal microscopy, and co-immunoprecipitation. Transmission electron microscopy, the RFP-GFP-LC3 adenovirus, and LC3 expression were used for autophagy detection. Here, we show that TNFAIP3 expression in AS peripheral blood non-classical monocytes was decreased. In normal monocytes, TNFAIP3 induced autophagy, which restricted inflammasome activation to the early stage of LPS stimulation. Zinc-finger domains of TNFAIP3 were able to interact and stabilize DEPTOR. TNFAIP3 and DEPTOR together rapidly promoted autophagy after LPS treatment to prevent NLRP3 inflammasome formation. Finally, TNFAIP3 and DEPTOR deficiency in AS non-classical monocytes facilitated inflammasome activation. Our study indicates that TNFAIP3-DEPTOR complex-induced early-onset autophagy is vital for immune inhibition in autoimmune disease.  相似文献   

15.
16.
《Free radical research》2013,47(12):1445-1453
Abstract

The present clinical trial examined the influence of a supplement, containing a combination of antioxidants extracted from fruit, berries and vegetables, on levels of plasma antioxidants (tocopherols, carotenoids and ascorbate), glycaemic control (blood glucose, HbA1c, insulin), oxidative stress biomarkers (F2-isoprostane, malondialdehyd, nitrotyrosine, 8-oxo-7, 8-dihydro-2′-deoxyguanosine, formamidopyrimidine glycosylase sites, frequency of micronucleated erythrocytes) and inflammatory markers (interleukin-6, C-reactive protein, prostaglandin F-metabolite) in type 2 diabetes. Forty subjects were randomly assigned to control, single or double dose group and completed the study. In summary, 12 weeks of antioxidant supplementation did neither affect glycaemic control nor the levels of biomarkers of oxidative stress or inflammation, despite substantially increased plasma concentrations of antioxidants. The absence of an effect may be explained by the selected study subjects with relatively well-controlled diabetes, a high intake of fruit and vegetable and levels of plasma antioxidants, biomarkers of oxidative stress and inflammatory markers comparable to those found in healthy subjects.  相似文献   

17.
Laurus nobilis Linn. (Lauraceae), commonly known as Bay, has been used as a traditional medicine in the Mediterranean and Europe to treat diverse immunological disorders. Although the effects of L. nobilis on immunosuppression have been reported, the detailed underlying mechanism remains unclear. In this study, to elucidate the anti-inflammatory mechanism of L. nobilis, we examined the effect of L. nobilis leaf extract on inflammasome activation in mouse bone marrow-derived macrophages. L. nobilis leaf extract inhibited NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation, which was associated with caspase-1 activation, interleukin-1β secretion, and apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome complex formation. We also observed that 1,8-cineole, the major component of L. nobilis extract, consistently suppressed NLRP3 inflammasome activation. Furthermore, L. nobilis leaf extract attenuated the in vivo expression of proinflammatory cytokines in an acute lung injury mouse model. Our results provide the first evidence that L. nobilis leaf extract modulates inflammatory signaling by suppressing inflammasome activation.  相似文献   

18.
Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region‐selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD‐induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD‐induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up‐regulation of autophagic markers LC3‐II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH‐SY5Y neuroblastoma cells. TD‐induced expression of autophagic markers was reversed once thiamine was re‐administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD‐induced death of SH‐SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD‐induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD‐induced autophagy. These results suggest that autophagy is neuroprotective in response to TD‐induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism.

  相似文献   


19.
In this present study, the duration of melatonin (Mel) administered to diabetic rats was prolonged so as to examine its effects on the biochemical liver parameters of diabetic rats. In the experiment, Male Sprague Dawley rats were divided randomly into five groups; the control, diabetic + Mel, diabetic, diabetic + insulin, and diabetic + Mel + insulin. Diabetes mellitus was induced by administration of a single dose of streptozotocin (60 mg/kg) intraperitoneally and rats were given vehicle as a solvent for Mel every day for 12 weeks. In the diabetic + Mel group, diabetic rats were administered Mel (10 mg/kg/day) for 12 weeks to treat diabetes. The diabetic + insulin group were diabetic rats given insulin (6 U/kg) subcutaneously for 12 weeks. The diabetic + Mel + insulin rats received insulin and Mel at the same dose and time. At the end of the experiment, the animals were decapitated and liver tissues were taken. The protective effect of Mel on liver tissue of diabetic rats was investigated, total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, adenosine deaminase, xanthine oxidase, paraoxonase 1, sodium/potassium ATPase, myeloperoxidase, γ-glutamyl transferase, sorbitol dehydrogenase, tumor necrosis factor-alpha, homocysteine, nitric oxide, glucose-6-phosphate dehydrogenase, and glycoprotein levels were determined in liver tissues. Treatment with Mel and/or insulin has been found to have a protective effect on biochemical parameters. The results showed that administration of Mel to diabetic rats prevented the distortion of the studied biochemical parameters of liver tissues.  相似文献   

20.
摘要 目的:探讨人参皂苷Rg3(ginsenoside Rg3,Rg3)对脓毒症介导的心肌损伤的作用效果及机制。方法:本研究通过对小鼠进行盲肠结扎穿孔手术的方法构建脓毒症模型。32只BALB/c小鼠随机分为假手术组(Sham组)、脓毒症组(CLP组)、人参皂苷Rg3治疗组(Rg3+CLP组)以及自噬抑制剂干预组(3-MA+Rg3+CLP组),每组8只。术后18 h分别留取各组小鼠血浆及心肌组织。通过ELISA方法检测白细胞介素-1β(IL-1β)、白细胞介素-18(IL-18)、乳酸脱氢酶(LDH)、肌酸激酶同工酶MB(CK-MB)及半胱氨酸蛋白酶-3(Caspase-3)表达水平。通过HE染色观察心肌组织形态结构的变化。应用Western-blot方法检测自噬及NLRP3炎性小体相关蛋白(NLRP3、ASC、Caspase-1)的表达。结果:与Sham组相比,CLP组小鼠心肌组织结构紊乱,炎性细胞浸润明显。另外,Caspase-3活性增加,NLRP3炎性小体相关蛋白(NLRP3、ASC、Caspase-1)表达升高,差异均有统计学意义(P<0.05)。与CLP组相比,外源应用Rg3组小鼠心肌组织炎性细胞浸润减少,并且Caspase-3活性降低,NLRP3炎性小体相关蛋白表达下降,差异有统计学意义(P<0.05),而部分自噬相关蛋白表达升高。应用自噬抑制剂后,较单纯应用Rg3组,心肌组织损伤明显,而NLRP3炎性小体活性增加,差异有统计学意义(P<0.05)。结论:脓毒症时NLRP3炎性小体激活,释放大量的细胞因子,进而导致心肌损伤。而Rg3治疗后,可以调节心肌细胞自噬,抑制NLRP3炎性小体激活,进而减轻细胞因子对心肌细胞的损伤。本研究表明Rg3可能通过调节心肌自噬,抑制NLRP3炎性小体的激活,进而减轻脓毒症时心脏的损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号