首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.  相似文献   

2.
mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5'-TOP (5'-terminal oligopyrimidine). To date, most of the proteins encoded by known 5'-TOP mRNAs are proteins involved in mRNA translation, such as ribosomal proteins and elongation factors. Rapamycin inhibits some mTORC1 functions, whereas mTOR-KIs (mTOR kinase inhibitors) interfere with all of them. mTOR-KIs inhibit overall protein synthesis more strongly than rapamycin. To study the effects of rapamycin or mTOR-KIs on synthesis of specific proteins, we applied pSILAC [pulsed SILAC (stable isotope-labelling with amino acids in cell culture)]. Our results reveal, first, that mTOR-KIs and rapamycin differentially affect the synthesis of many proteins. Secondly, mTOR-KIs inhibit the synthesis of proteins encoded by 5'-TOP mRNAs much more strongly than rapamycin does, revealing that these mRNAs are controlled by rapamycin-insensitive outputs from mTOR. Thirdly, the synthesis of certain other proteins shows a similar pattern of inhibition. Some of them appear to be encoded by 'novel' 5'-TOP mRNAs; they include proteins which, like known 5'-TOP mRNA-encoded proteins, are involved in protein synthesis, whereas others are enzymes involved in intermediary or anabolic metabolism. These results indicate that mTOR signalling may promote diverse biosynthetic processes through the translational up-regulation of specific mRNAs. Lastly, a SILAC-based approach revealed that, although rapamycin and mTOR-KIs have little effect on general protein stability, they stabilize proteins encoded by 5'-TOP mRNAs.  相似文献   

3.
4.
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.  相似文献   

5.
Regulation of mammalian translation factors by nutrients.   总被引:13,自引:0,他引:13  
Protein synthesis requires both amino acids, as precursors, and a substantial amount of metabolic energy. It is well established that starvation or lack of nutrients impairs protein synthesis in mammalian cells and tissues. Branched chain amino acids are particularly effective in promoting protein synthesis. Recent work has revealed important new information about the mechanisms involved in these effects. A number of components of the translational machinery are regulated through signalling events that require the mammalian target of rapamycin, mTOR. These include translational repressor proteins (eukaryotic initiation factor 4E-binding proteins, 4E-BPs) and protein kinases that act upon the small ribosomal subunit (S6 kinases). Amino acids, especially leucine, positively regulate mTOR signalling thereby relieving inhibition of translation by 4E-BPs and activating the S6 kinases, which can also regulate translation elongation. However, the molecular mechanisms by which amino acids modulate mTOR signalling remain unclear. Protein synthesis requires a high proportion of the cell's metabolic energy, and recent work has revealed that metabolic energy, or fuels such as glucose, also regulate targets of the mTOR pathway. Amino acids and glucose modulate a further important regulatory step in translation initiation, the activity of the guanine nucleotide-exchange factor eIF2B. eIF2B controls the recruitment of the initiator methionyl-tRNA to the ribosome and is activated by insulin. However, in the absence of glucose or amino acids, insulin no longer activates eIF2B. Since control of eIF2B is independent of mTOR, these data indicate the operation of additional, and so far unknown, regulatory mechanisms that control eIF2B activity.  相似文献   

6.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5′-m7G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation.  相似文献   

7.
8.
Under hypoxic conditions, cells suppress energy-intensive mRNA translation by modulating the mammalian target of rapamycin (mTOR) and pancreatic eIF2alpha kinase (PERK) pathways. Much is known about hypoxic inhibition of mTOR activity; however, the cellular processes activating PERK remain unclear. Since hypoxia is known to increase intracellular reactive oxygen species (ROS), we hypothesized that hypoxic ROS regulate mTOR and PERK to control mRNA translation and cell survival. Our data indicate that although exogenous ROS inhibit mTOR, eIF2alpha, and eEF2, mTOR and eEF2 were largely refractory to ROS generated under moderate hypoxia (0.5% O(2)). In direct contrast, the PERK/eIF2alpha/ATF4 integrated stress response (ISR) was activated by hypoxic ROS and contributed to global protein synthesis inhibition and adaptive ATF4-mediated gene expression. The ISR as well as exogenous growth factors were critical for cell viability during extended hypoxia, since ISR inhibition decreased the viability of cells deprived of O(2) and growth factors. Collectively, our data support an important role for ROS in hypoxic cell survival. Under conditions of moderate hypoxia, ROS induce the ISR, thereby promoting energy and redox homeostasis and enhancing cellular survival.  相似文献   

9.
Regulation of peptide-chain elongation in mammalian cells.   总被引:30,自引:0,他引:30  
The elongation phase of mRNA translation is the stage at which the polypeptide is assembled and requires a substantial amount of metabolic energy. Translation elongation in mammals requires a set of nonribosomal proteins called eukaryotic elongation actors or eEFs. Several of these proteins are subject to phosphorylation in mammalian cells, including the factors eEF1A and eEF1B that are involved in recruitment of amino acyl-tRNAs to the ribosome. eEF2, which mediates ribosomal translocation, is also phosphorylated and this inhibits its activity. The kinase acting on eEF2 is an unusual and specific one, whose activity is dependent on calcium ions and calmodulin. Recent work has shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and by the nutrient-sensitive mTOR signalling pathway, which serve to activate eEF2 in response to mitogenic or hormonal stimuli. Conversely, eEF2 is inactivated by phosphorylation in response to stimuli that increase energy demand or reduce its supply. This likely serves to slow down protein synthesis and thus conserve energy under such circumstances.  相似文献   

10.
11.
The macrolide antibiotic rapamycin inhibits the mammalian target of rapamycin protein (mTOR) kinase resulting in the global inhibition of cap-dependent protein synthesis, a blockade in ribosome component biosynthesis, and G1 cell cycle arrest. G1 arrest may occur by inhibiting the protein synthesis of critical factors required for cell cycle progression. Hypersensitivity to mTOR inhibitors has been demonstrated in cells having elevated levels of AKT kinase activity, whereas cells containing quiescent AKT activity are relatively resistant. Our previous data suggest that low AKT activity induces resistance by allowing continued cap-independent protein synthesis of cyclin D1 and c-Myc proteins. In support of this notion, the current study demonstrates that the human cyclin D1 mRNA 5' untranslated region contains an internal ribosome entry site (IRES) and that both this IRES and the c-myc IRES are negatively regulated by AKT activity. Furthermore, we show that cyclin D1 and c-myc IRES function is enhanced following exposure to rapamycin and requires both p38 MAPK and RAF/MEK/ERK signaling, as specific inhibitors of these pathways reduce IRES-mediated translation and protein levels under conditions of quiescent AKT activity. Thus, continued IRES-mediated translation initiation may permit cell cycle progression upon mTOR inactivation in cells in which AKT kinase activity is relatively low.  相似文献   

12.
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.  相似文献   

13.
Rho-associated kinases (ROCKs) are critical molecules involved in the physiological functions of macrophages, such as chemotaxis and phagocytosis. We demonstrate that macrophage adherence promotes rapid changes in physiological functions that depend on translational upregulation of preformed ROCK-1 mRNA, but not ROCK-2 mRNA. Before adherence, both ROCK mRNAs were present in the cytoplasm of macrophages, whereas ROCK proteins were undetectable. Macrophage adherence promoted signaling through P-selectin glycoprotein ligand-1 (PSGL-1)/Akt/mTOR that resulted in synthesis of ROCK-1, but not ROCK-2. Following synthesis, ROCK-1 was catalytically active. In addition, there was a rapamycin/sirolimus-sensitive enhanced loading of ribosomes on preformed ROCK-1 mRNAs. Inhibition of mTOR by rapamycin abolished ROCK-1 synthesis in macrophages resulting in an inhibition of chemotaxis and phagocytosis. Macrophages from PSGL-1-deficient mice recapitulated pharmacological inhibitor studies. These results indicate that receptor-mediated regulation at the level of translation is a component of a rapid set of mechanisms required to direct the macrophage phenotype upon adherence and suggest a mechanism for the immunosuppressive and anti-inflammatory effects of rapamycin/sirolimus.  相似文献   

14.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   

15.

Background

The mammalian target of Rapamycin (mTOR) kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM) formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing.

Methodology/Principal Findings

Here we show that consolidation of inhibitory avoidance (IA) LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO). In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin.

Conclusions/Significance

In conclusion, our findings demonstrate that: 1) mTOR-mediated mRNA translation is required for memory consolidation during at least two restricted time windows; 2) this kinase acts downstream BDNF in the hippocampus and; 3) it controls the increase of synaptic GluR1 necessary for memory consolidation.  相似文献   

16.
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.  相似文献   

17.
The role of the AMP-activated kinase (AMPK) as a metabolic sensor in skeletal muscle has been far better characterized for glucose and fat metabolism than for protein metabolism. Therefore, the studies presented here were designed to examine the effects of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of mRNA translation and protein synthesis in cultures of C(2)C(12) myotubes. The findings show that, following AICAR (2 mM) treatment, AMPK phosphorylation was increased within 15 min and remained elevated throughout a 60-min time course. In association with the increase in AMPK phosphorylation, global rates of protein synthesis declined to 90, 70, and 63% of the control values at the 15-, 30-, and 60-min time points, respectively. By 60 min, polysomes disaggregated into free ribosomal subunits, suggesting an inhibition of initiation of mRNA translation. However, phosphorylation of eukaryotic elongation factor 2 was increased at 15 and 30 min but then declined to control values by 60 min, suggesting a transient inhibition of translation elongation. The decline in protein synthesis and changes in mRNA translation were associated with a repression of the mammalian target of rapamycin (mTOR) signaling pathway, as indicated by increased association of Hamartin with Tuberin, increased association of regulatory associated protein of mTOR with mTOR, and dephosphorylation of the downstream targets ribosomal protein S6 kinase-1 and eukaryotic initiation factor 4E-binding protein-1. They were also associated with activation of the MAPK signaling pathway, as indicated by increased phosphorylation of MEK1/2 and ERK1/2 and the downstream target eIF4E. Overall, the data support the conclusion that AICAR-induced AMPK activation suppresses protein synthesis through concurrent repression of mTOR signaling and activation of MAPK signaling, the combination of which modulates transient changes in the initiation and elongation phases of mRNA translation.  相似文献   

18.
The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.  相似文献   

19.
Although insulin normally activates global mRNA translation, it has a specific inhibitory effect on translation of apolipoprotein B (apoB) mRNA. This suggests that insulin induces a unique signaling cascade that leads to specific inhibition of apoB mRNA translation despite global translational stimulation. Recent studies have revealed that insulin functions to regulate apoB mRNA translation through a mechanism involving the apoB mRNA 5' untranslated region (5' UTR). Here, we further investigate the role of downstream insulin signaling molecules on apoB mRNA translation, and the mechanism of apoB mRNA translation itself. Transfection studies in HepG2 cells expressing deletion constructs of the apoB 5' UTR showed that the cis-acting region responding to insulin was localized within the first 64 nucleotides. Experiments using chimeric apoB UTR-luciferase constructs transfected into HepG2 cells followed by treatment with wortmannin, a PI-3K inhibitor, and rapamycin, an mTOR inhibitor, showed that signaling via PI-3K and mTOR pathways is necessary for insulin-mediated inhibition of chimeric 5' UTR-luciferase expression. In vitro translation of chimeric cRNA confirmed that the effects observed were translational in nature. Furthermore, using RNA-EMSA we found that wortmannin pretreatment blocked insulin-mediated inhibition of the binding of RNA-binding factor(s), migrating near the 110 kDa marker, to the 5' UTR. Radiolabeling studies in HepG2 cells also showed that insulin-mediated control of the synthesis of endogenously expressed full length apoB100 is mediated via the PI-3K and mTOR pathways. Finally, using dual-cistronic luciferase constructs we demonstrate that apoB 5' UTR may have weak internal ribosomal entry (IRES) translation which is not affected by insulin stimulation, and may function to stimulate basal levels of apoB mRNA translation.  相似文献   

20.
DExH/D box proteins are required for the major transactions of RNA, including mRNA synthesis, pre-mRNA splicing, ribosome biogenesis, translation and RNA decay. In the popular imagination, DExH/D box proteins have become synonymous with 'RNA helicases', which are enzymes that unwind duplex RNAs in concert with the hydrolysis of nucleoside triphosphates (NTPs). But all DExH/D box proteins may not be RNA helicases and the energy of NTP hydrolysis by DExH/D box proteins may be harnessed for other purposes. Cellular RNAs are associated with proteins, often in large ribonucleoprotein (RNP) complexes. This review focuses on recent progress suggesting a role for DExH/D box proteins as 'RNPases' that use chemical energy to remodel the interactions of RNA and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号