首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
《Autophagy》2013,9(4):387-389
A wide pool of cytosolic proteins is selectively degraded in lysosomes by chaperone-mediated autophagy (CMA). Binding of these proteins to a receptor at the lysosomal membrane is the limiting step in CMA. Levels of this receptor are tightly regulated through changes in its degradation, multimeric organization and dynamic distribution between the lysosomal membrane and lumen. We have now reported that subcompartmentalization of the receptor in discrete lipid microdomains at the lysosomal membrane regulates its engagement in each of these processes — degradation, multimerization and membrane retrieval. Changes in the lipid composition of the membrane thus affect the dynamics of the receptor and, consequently, CMA activity. As an example of CMA dysfunction resulting from perturbation of the lipid composition of the lysosomal membrane, we discuss here a second study in which we analyzed the changes in the dynamics of the receptor during aging. CMA activity decreases with age primarily due to a decrease in the levels of the CMA receptor at the lysosomal membrane. Now we have found that age-related alterations in the lipid composition of the discrete microdomains at the lysosomal membrane are behind the reduced lysosomal levels of the receptor and, consequently, the declined CMA activity that occurs during aging.

Addendum to:

Altered Dynamics of the Lysosomal Receptor for Chaperone-Mediated Autophagy with Age

R. Kiffin, S. Kaushik, M. Zeng, U. Bandyopadhyay, C. Zhang, A.C. Massey, M. Martinez-Vicente and A.M. Cuervo

J Cell Sci 2007; 120:782-91

and

Lysosome Membrane Lipid Microdomains: Novel Regulators of Chaperone-Mediated Autophagy

S. Kaushik, A.C. Massey and A.M. Cuervo

EMBO J 2006; 25:3921-33  相似文献   

4.

Background

The International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) Project is a population-based, longitudinal study describing early growth and development in an optimally healthy cohort of 4607 mothers and newborns. At 24 months, children are assessed for neurodevelopmental outcomes with the INTERGROWTH-21st Neurodevelopment Package. This paper describes neurodevelopment tools for preschoolers and the systematic approach leading to the development of the Package.

Methods

An advisory panel shortlisted project-specific criteria (such as multi-dimensional assessments and suitability for international populations) to be fulfilled by a neurodevelopment instrument. A literature review of well-established tools for preschoolers revealed 47 candidates, none of which fulfilled all the project''s criteria. A multi-dimensional assessment was, therefore, compiled using a package-based approach by: (i) categorizing desired outcomes into domains, (ii) devising domain-specific criteria for tool selection, and (iii) selecting the most appropriate measure for each domain.

Results

The Package measures vision (Cardiff tests); cortical auditory processing (auditory evoked potentials to a novelty oddball paradigm); and cognition, language skills, behavior, motor skills and attention (the INTERGROWTH-21st Neurodevelopment Assessment) in 35–45 minutes. Sleep-wake patterns (actigraphy) are also assessed. Tablet-based applications with integrated quality checks and automated, wireless electroencephalography make the Package easy to administer in the field by non-specialist staff. The Package is in use in Brazil, India, Italy, Kenya and the United Kingdom.

Conclusions

The INTERGROWTH-21st Neurodevelopment Package is a multi-dimensional instrument measuring early child development (ECD). Its developmental approach may be useful to those involved in large-scale ECD research and surveillance efforts.  相似文献   

5.
Autophagy is a process used for intracellular digestion of organelles and proteins and has special relevance to the long-lived cardiomyocytes in heart disease. The pathway for autophagy and all its mediators remain to be elucidated, but involve such proteins as Atg, Beclin-1, LAMP-2, BH3, Bcl2, PI3K Kinase as well as a plethora of others. It is still not entirely clear whether autophagy is destructive or beneficial to the cell; evidence suggests that the answer is case-specific. For instance, autophagy appears to preserve cell life under cases of ischemia in I/R injury, but is detrimental during reperfusion. High levels of homocysteine (Hcy), a sulfur-containing amino acid, have been shown to be an independent risk factor for chronic heart failure. There are several links to induction and repression of autophagy and Hcy; the following connections to Hcy and autophagy have been made: intracellular nitrous oxide production, intracellular calcium production, and reactive oxygen species production. Further work remains to be elucidated concerning the specific mechanisms under which autophagy occurs and possible Hcy-mediated connections. Moreover, the therapeutic implications might be of some promise to patients.  相似文献   

6.
大脑的发育和神经系统疾病的发生发展是极其复杂的过程,涉及多种因素. 大量研究证实,表观遗传调控系统,如组蛋白甲基化、组蛋白乙酰化和DNA甲基化,是其中一类重要的调控因素. 近年来研究发现,DNA去甲基化中间产物5-羟甲基胞嘧啶(5hmC)是一种新的表观遗传标记形式,且在神经元内呈现非常高的水平. 这暗示5hmC可能在脑的生长发育以及中枢神经系统疾病的发生发展过程中有着重要的调控作用. 本文综述了近年来该领域的重要研究进展,并且提出一些今后的研究展望.  相似文献   

7.
《Autophagy》2013,9(6):610-613
Autophagy is an evolutionarily conserved process of cytoplasm and cellular organelle degradation in lysosomes. Autophagy is a survival pathway required for cellular viability during starvation; however, if it proceeds to completion, autophagy can lead to cell death. In neurons, constitutive autophagy limits accumulation of polyubiquitinated proteins and prevents neuronal degeneration. Therefore, autophagy has emerged as a homeostatic mechanism regulating the turnover of long-lived or damaged proteins and organelles, and buffering metabolic stress under conditions of nutrient deprivation by recycling intracellular constituents. Autophagy also plays a role in tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in many human ovarian, breast, and prostate cancers, and beclin1+/- mice are tumor-prone. We found that allelic loss of beclin1 renders immortalized mouse mammary epithelial cells susceptible to metabolic stress and accelerates lumen formation in mammary acini. Autophagy defects also activate the DNA damage response in vitro and in mammary tumors in vivo, promote gene amplification, and synergize with defective apoptosis to accelerate mammary tumorigenesis. Thus, loss of the prosurvival role of autophagy likely contributes to breast cancer progression by promoting genome damage and instability. Exploring the yet unknown relationship between defective autophagy and other breast cancer-promoting functions may provide valuable insight into the pathogenesis of breast cancer and may have significant prognostic and therapeutic implications for breast cancer patients.

Addendum to:

Autophagy Mitigates Metabolic Stress and Genome Damage in Mammary Tumorigenesis

V. Karantza-Wadsworth, S. Patel, O. Kravchuk, G. Chen, R. Mathew, S. Jin and E. White

Genes Dev 2007; 21:1621-35  相似文献   

8.
细胞自噬是一种保守的广泛存在于真核细胞内的溶酶体依赖性分解代谢途径,其通过形成双层膜结构的自噬体降解蛋白质和细胞器,参与物质循环和稳态维持。同时,自噬也能作为机体免疫防御的一部分发挥抗病毒的作用,或是被病毒利用以促进其自身增殖。冠状病毒是一种有囊膜的单股正链RNA病毒,能够诱导双层膜囊泡形成转录复合物,进一步指导病毒基因组的合成。研究表明多个冠状病毒成员能够诱导自噬发生,自噬参与了病毒增殖的多个环节。本文拟对细胞自噬的概况及作用、自噬在病毒感染特别是冠状病毒感染中的作用进行综述,以期为揭示冠状病毒的致病机理提供参考,并为开发冠状病毒的治疗方案提供新思路。  相似文献   

9.
自噬是细胞的一种正常的生理活动,参与细胞内损伤的蛋白质和亚细胞器经溶酶体途径降解的过程。自噬可以抵御外界的不良环境,在多种疾病中起着重要作用。近年来,大量研究表明自噬在细胞新陈代谢和生理功能上有双重作用,在疾病发生的不同时期,自噬起到不同的作用。通常情况自噬可以及时的清除细胞内损伤的蛋白质,作为一种细胞的保护机制,但是自噬的持续活化,导致细胞内大量蛋白质的降解,使细胞无法维持其基本结构,最终将导致细胞坏死或凋亡。自噬、凋亡和坏死的转化,很有可能受到p53、Bcl-2、Beclin-1、ATG5、TG2及p62等信号分子调控。肝脏和心脏是维持人体生命活动的重要器官,自噬在脂肪肝、肝硬化、心肌梗塞及心脏衰竭等疾病中扮演着重要的角色。本文总结了自噬、凋亡及坏死的相互关系,自噬在疾病中的双重作用,并重点介绍自噬在肝脏和心脏疾病中的作用。  相似文献   

10.
11.
《Autophagy》2013,9(4):354-356
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes via Toll-like receptors (TLRs) upon endocytosis of virions. Yet, pDC responses to certain single-stranded RNA viruses occur only following live viral infection. In our recent study, we presented evidence that the recognition of such viruses by TLR7 requires autophagy. We speculate that the requirement for autophagy in viral recognition reflects the necessity for transportation of cytosolic viral replication intermediates into the lysosome where TLR7 is activated. In addition, autophagy was found to be required for pDCs to produce type I interferon (IFN) in response to both ssRNA and dsDNA viruses. These results indicated that autophagy plays a key role in mediating virus detection and IFNα secretion in pDCs, and suggest that cytosolic replication intermediates of ssRNA viruses serve as pathogen signatures recognized by TLR7.

Addendum to:

Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells

H.K. Lee, J.M. Lund, B. Ramanathan, N. Mizushima and A. Iwasaki

Science 2007; In press  相似文献   

12.
13.
14.
Neurodevelopmental defects in humans represent a clinically heterogeneous group of disorders. Here, we report the genetic and functional dissection of a multigenerational pedigree with an X-linked syndromic disorder hallmarked by microcephaly, growth retardation, and seizures. Using an X-linked intellectual disability (XLID) next-generation sequencing diagnostic panel, we identified a novel missense mutation in the gene encoding 60S ribosomal protein L10 (RPL10), a locus associated previously with autism spectrum disorders (ASD); the p.K78E change segregated with disease under an X-linked recessive paradigm while, consistent with causality, carrier females exhibited skewed X inactivation. To examine the functional consequences of the p.K78E change, we modeled RPL10 dysfunction in zebrafish. We show that endogenous rpl10 expression is augmented in anterior structures, and that suppression decreases head size in developing morphant embryos, concomitant with reduced bulk translation and increased apoptosis in the brain. Subsequently, using in vivo complementation, we demonstrate that p.K78E is a loss-of-function variant. Together, our findings suggest that a mutation within the conserved N-terminal end of RPL10, a protein in close proximity to the peptidyl transferase active site of the 60S ribosomal subunit, causes severe defects in brain formation and function.  相似文献   

15.

Aims

Ephrin-B1 (EfnB1) was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity.

Methods and Results

EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor necrosis factor-α (TNF-α) and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1) mRNA level and augmented the TNF-α-mediated THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte adhesion by coculture with RAW264.7 cells. TNF-α-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was reduced by EFNB1-overexpression.

Conclusions

EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.  相似文献   

16.
《Autophagy》2013,9(5):461-463
Autophagy is a highly regulated cellular pathway used by eukaryotic cells to consume parts of their constituents during development or starvation. It is associated with extensive rearrangements of intracellular membranes, and involves the cooperation of many gene products in the regulation and execution phase by largely unknown mechanisms. Recent results strongly indicate the role of autophagy in the degradation of damaged macromolecules, in particular misfolded, aberrant proteins, and in organelle turnover; in mutant mice with reduced autophagy, accumulation of abnormal cytosolic proteins as inclusion bodies and massive cell loss occur similarly to human neurodegenerative disorders. Thus, autophagy seems to prevent neurons from undergoing protein aggregation-induced degeneration. In contrast, we have shown that inactivation of genes involved in autophagosome formation suppresses neuronal demise induced by various hyperactivating ion channel mutations or by neurotoxins in the nematode Caenorhabditis elegans. These results raise the possibility that autophagy may also contribute to excitotoxic necrotic-like cell death. This way, autophagic degradation of cytoplasmic materials might have a dual role in the survival of neurons. Depending on the actual cellular milieu and insulting factor, it can act both as a protector and contributor to neuronal damage.

Addendum to:

Influence of Autophagy Genes on Ion Channel-Dependent Neuronal Degeneration in Caenorhabditis elegans

M.L. Tóth, P. Simon, A.L. Kovács,and T. Vellai

J Cell Sci 2007; 120:1134-41  相似文献   

17.
活性氧是细胞代谢中产生的有很强反应活性的分子,易将邻近分子氧化,并参与细胞内多种信号转导途径,对相关生理过程进行调控.自噬是真核细胞通过溶酶体机制对自身组分进行降解再利用的过程,在细胞应激及疾病发生等过程中发挥重要作用.本文对活性氧和自噬相关调节进行分类介绍,根据新近研究进展,从活性氧参与的自噬性死亡、自噬性存活以及线粒体自噬3方面探讨了相关信号转导机制,对活性氧作为信号分子参与的自噬调控途径做一总结和介绍.  相似文献   

18.
Huntington Disease (HD) is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt). HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA) components, heat shock protein cognate 70 (Hsc70) and lysosome-associated protein 2A (LAMP-2A) in degradation of Htt fragment 1-552aa (Htt-552). A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.  相似文献   

19.
During the search for cardioprotective mechanisms in a porcine model of chronic myocardial ischemia and hibernating myocardium, we discovered evidence for autophagy, which could be involved in the protection against apoptosis. Autophagy is a cellular degradation process responsible for the turnover of unnecessary or dysfunctional organelles and cytoplasmic proteins, which become sequestered in a double-membrane-bound vesicle, termed autophagosome, and subsequently degrade upon fusion with lysosomes. The dauer phase in C. elegans shares similarities with the induction of autophagy in chronically ischemic (hibernating) myocardium. In this sense, autophagy is an essential mechanism for survival which is activated by environmental stresses and confers stress resistance to the organism. Our study provided insight into understanding of the protective mechanism of autophagy in chronic ischemia.  相似文献   

20.
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号