首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

2.
《Autophagy》2013,9(11):1837-1851
Mitochondrial quality control plays a vital role in the maintenance of optimal mitochondrial function. However, its roles and regulation remain ill-defined in cardiac pathophysiology. Here, we tested the hypothesis that PARK2/Parkin, an E3-ligase recently described as being involved in the regulation of cardiac mitophagy, is important for (1) the maintenance of normal cardiac mitochondrial function; and (2) adequate recovery from sepsis, a condition known to induce reversible mitochondrial injury through poorly understood mechanisms. Investigations of mitochondrial and cardiac function were thus performed in wild-type and Park2-deficient mice at baseline and at 2 different times following administration of a sublethal dose of E. coli lipopolysaccharide (LPS). LPS injection induced cardiac and mitochondrial dysfunctions that were followed by complete recovery in wild-type mice. Recovery was associated with morphological and biochemical evidence of mitophagy, suggesting that this process is implicated in cardiac recovery from sepsis. Under baseline conditions, multiple cardiac mitochondrial dysfunctions were observed in Park2-deficient mice. These mild dysfunctions did not result in a visibly distinct cardiac phenotype. Importantly, Park2-deficient mice exhibited impaired recovery of cardiac contractility and constant degradation of mitochondrial metabolic functions. Interestingly, autophagic clearance of damaged mitochondria was still possible in the absence of PARK2 likely through compensatory mechanisms implicating PARK2-independent mitophagy and upregulation of macroautophagy. Together, these results thus provide evidence that in vivo, mitochondrial autophagy is activated during sepsis, and that compensation for a lack of PARK2 is only partial and/or that PARK2 exerts additional protective roles in mitochondria.  相似文献   

3.
The sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) and myosin heavy chain (MyHC) levels were measured in hindlimb-denervated and selectively denervated rat soleus muscles. Selective denervation allowed passive movement of the soleus, whereas hindlimb denervation rendered it to passivity. To minimize chronic effects, we followed the changes only for 2 weeks. Selective denervation resulted in less muscle atrophy, a faster slow-to-fast transition of MyHC isoforms, and less coordinated expressions of the slow vs fast isoforms of MyHC and SERCA. Generally, expression of the slow-twitch type SERCA2a was found to be less dependent, whereas the slow-twitch type MyHC1 was the most dependent on innervation. Our study shows that passive movement is able to ameliorate denervation-induced atrophy of the soleus and that it also accentuates the dyscoordination in the expression of the corresponding slow and fast isoforms of MyHC and SERCA. (J Histochem Cytochem 56:1013–1022, 2008)  相似文献   

4.
Deficiency of the Bax gene attenuates denervation-induced apoptosis   总被引:3,自引:0,他引:3  
Apoptosis has been implicated in mediating denervation-induced muscle wasting. In this study we determined the effect of interference of apoptosis on muscle wasting during denervation by using mice genetically deficient in pro-apoptotic Bax. After denervation, muscle wasting was evident in both wild-type and Bax−/− muscles but reduction of muscle weight was attenuated in Bax−/− mice. Apoptotic DNA fragmentation increased in wild-type denervated muscles whereas there was no statistical increase in DNA fragmentation in denervated muscles from Bax−/− mice. Mitochondrial AIF and Smac/DIABLO releases and Bcl-2, p53 and HSP27 increased whereas XIAP and MnSOD decreased to a similar extent in muscles from wild-type and Bax−/− mice following denervation. Mitochondrial cytochrome c release was elevated in denervated muscles from wild-type mice but the increase was suppressed in muscles from Bax−/− mice. Increases in caspase-3 and -9 activities and oxidative stress markers H2O2, MDA/4-HAE and nitrotyrosine were all evident in denervated muscles from wild-type mice but these changes were absent in muscles from Bax−/− mice. Moreover, ARC increased exclusively in denervated Bax−/− muscle. Our data indicate that under conditions of denervation, pro-apoptotic signalling is suppressed and muscle wasting is attenuated when the Bax gene is lacking. These findings suggest that interventions targeting apoptosis may be valuable in ameliorating denervation-associated pathologic muscle wasting in certain neuromuscular disorders that involve partial or full denervation.  相似文献   

5.
6.
The Parkinson disease (PD)-associated E3-ubiquitin (Ub) ligase PARK2/parkin plays a central role in many stress response pathways, and in particular, in mitochondrial quality control. Within this pathway, PARK2 activation is accompanied by a robust increase in its autoubiquitination, followed by clearance of the damaged mitochondria by selective autophagy (mitophagy). Yet, little is known about how this auto-ubiquitination is regulated during mitophagy. In our study, we demonstrate that PARK2 forms predominantly K6-linked Ub conjugates on itself. Moreover, PARK2 interacts with the deubiquitinating enzyme USP8 that preferentially removes these K6-linked conjugates, thereby regulating the activity and function of PARK2 in the pathway. When USP8 is silenced, a persistence of K6-linked Ub conjugates on PARK2 delays both its translocation to damaged mitochondria and successful completion of mitophagy. Taken together, these findings implicate a novel role for K6-linked Ub conjugates and USP8-mediated deubiquitination in the regulation of PARK2 in mitochondrial quality control.  相似文献   

7.
The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.  相似文献   

8.
The selective degradation of mitochondria by the process of autophagy, termed mitophagy, is one of the major mechanisms of mitochondrial quality control. The best-studied mitophagy pathway is the one mediated by PINK1 and PARK2/Parkin. From recent studies it has become clear that ubiquitin-ligation plays a pivotal role and most of the focus has been on the role of ubiquitination of mitochondrial proteins in mitophagy. Even though ubiquitination is a reversible process, very little is known about the role of deubiquitinating enzymes (DUBs) in mitophagy. Here, we report that 2 mitochondrial DUBs, USP30 and USP35, regulate PARK2-mediated mitophagy. We show that USP30 and USP35 can delay PARK2-mediated mitophagy using a quantitative mitophagy assay. Furthermore, we show that USP30 delays mitophagy by delaying PARK2 recruitment to the mitochondria during mitophagy. USP35 does not delay PARK2 recruitment, suggesting that it regulates mitophagy through an alternative mechanism. Interestingly, USP35 only associates with polarized mitochondria, and rapidly translocates to the cytosol during CCCP-induced mitophagy. It is clear that PARK2-mediated mitophagy is regulated at many steps in this important quality control pathway. Taken together, these findings demonstrate an important role of mitochondrial-associated DUBs in mitophagy. Because defects in mitochondria quality control are implicated in many neurodegenerative disorders, our study provides clear rationales for the design and development of drugs for the therapeutic treatment of neurodegenerative diseases such as Parkinson and Alzheimer diseases.  相似文献   

9.
This study investigated regulation of autophagy in slow-twitch soleus and fast-twitch plantaris muscles in fasting-related atrophy. Male Fischer-344 rats were subjected to fasting for 1, 2, or 3 days. Greater weight loss was observed in plantaris muscle than in soleus muscle in response to fasting. Western blot analysis demonstrated that LC3-II, a marker protein for macroautophagy, was expressed at a notably higher level in plantaris than in soleus muscle, and that the expression level was fasting duration-dependent. To identify factors related to LC3-II enhancement, autophagy-related signals were examined in both types of muscle. Phosphorylated mTOR was reduced in plantaris but not in soleus muscle. FOXO3a and ER stress signals were unchanged in both muscle types during fasting. These findings suggest that preferential atrophy of fast-twitch muscle is associated with induction of autophagy during fasting and that differences in autophagy regulation are attributable to differential signal regulation in soleus and plantaris muscle.  相似文献   

10.
Summary Ultrastructural diversification of muscle fibers, with regard particularly to myofibrillar changes, has been investigated in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles of the rat during fetal and postnatal development in the presence and in the absence of motor innervation. The band pattern and the shape of the myofibrils were uniform in fetal and neonatal muscle fibers and underwent differential changes during the first weeks after birth, concomitantly with fiber type specialization. The most evident variations in myofibrillar structure arising in this period concern the thickness of the Z band and the arrangement of the myofibrils. Myofibril formation was at first not impaired by denervation of rat muscles performed in utero and, although focal disintegration of myofibrils and detachment and loss of orientation of filaments became apparent by one week, atrophic muscle fibers with well-organized myofibrils could be seen as late as 2 months after birth. However, denervated muscle fibers of EDL and soleus did not display any significant and consistent difference in myofibrillar band pattern and shape. No variation in mitochondrial content and sarcoplasmic reticulum development was likewise seen in muscle fibers of EDL and soleus after fetal denervation. The findings emphasize the importance of neuromuscular interactions in muscle differentiation.This investigation was supported in part by a grant from Muscular Dystrophy Associations of America, Inc. to Prof. M. Aloisi. A preliminary report of part of this work was presented at the XL Congress of the Italian Zoological Society, Garda, 1971 (Schiaffino, 1972).  相似文献   

11.
12.
13.
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.  相似文献   

14.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

15.
Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin–proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.  相似文献   

16.
《Autophagy》2013,9(10):1604-1620
Autophagy is an important proteolytic pathway in skeletal muscles. The roles of muscle fiber type composition and oxidative capacity remain unknown in relation to autophagy. The diaphragm (DIA) is a fast-twitch muscle fiber with high oxidative capacity, the tibialis anterior (TA) muscle is a fast-twitch muscle fiber with low oxidative capacity, and the soleus muscle (SOL) is a slow-twitch muscle with high oxidative capacity. We hypothesized that oxidative capacity is a major determinant of autophagy in skeletal muscles. Following acute (24 h) starvation of adult C57/Bl6 mice, each muscle was assessed for autophagy and compared with controls. Autophagy was measured by monitoring autophagic flux following leupeptin (20 mg/kg) or colchicine (0.4 mg/kg/day) injection. Oxidative capacity was measured by monitoring citrate synthase activity. In control mice, autophagic flux values were significantly greater in the TA than in the DIA and SOL. In acutely starved mice, autophagic flux increased, most markedly in the TA, and several key autophagy-related genes were significantly induced. In both control and starved mice, there was a negative linear correlation of autophagic flux with citrate synthase activity. Starvation significantly induced AMPK phosphorylation and inhibited AKT and RPS6KB1 phosphorylation, again most markedly in the TA. Starvation induced Foxo1, Foxo3, and Foxo4 expression and attenuated the phosphorylation of their gene products. We conclude that both basal and starvation-induced autophagic flux are greater in skeletal muscles with low oxidative capacity as compared with those with high oxidative capacity and that this difference is mediated through selective activation of the AMPK pathway and inhibition of the AKT-MTOR pathways.  相似文献   

17.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

18.
Loss-of-function mutations in the genes encoding PRKN/parkin and PINK1 cause autosomal recessive Parkinson disease (PD). Seminal work in Drosophila revealed that loss of park/parkin and Pink1 causes prominent mitochondrial pathology in flight muscle and, to a lesser extent, in dopaminergic neurons. Subsequent studies in cultured mammalian cells discovered a crucial role for PRKN/PARK2 and PINK1 in selective macroautophagic removal of mitochondria (mitophagy). However, direct evidence for the existence of a PINK1-PRKN/PARK2-mediated mitophagy pathway in vivo is still scarce. Recently, we engineered Drosophila that express the mitophagy reporter mt-Keima. We demonstrated that mitophagy occurs in flight muscle cells and dopaminergic neurons in vivo and increases with aging. Moreover, this age-dependent rise depends on park and Pink1. Our data also suggested that some aspects of the mitochondrial phenotype of park- and Pink1-deficient flies are independent of the mitophagy defect, and that park and Pink1 may have multiple functions in the regulation of the integrity of these organelles. Here, we discuss implications of these findings as well as possible future applications of the mt-Keima fly model.  相似文献   

19.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

20.
《Autophagy》2013,9(10):1801-1813
Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/? mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号