首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel vacuolar myopathy with dilated cardiomyopathy   总被引:1,自引:0,他引:1  
Sugimoto S 《Autophagy》2007,3(6):638-639
We report a 46-year-old male patient with late-onset vacuolar myopathy and dilated cardiomyopathy. Acid maltase activity of the muscle was normal, but the biopsied muscle specimen stained for lysosome-associated membrane protein-2 (LAMP-2), which has recently been reported to be deficient in muscles of patients with Danon disease. The clinical features of the patient are distinct from X-linked myopathy with excessive autophagy, infantile autophagic vacuolar myopathy and autophagic vacuolar myopathy with late-onset and multiorgan involvement (Kaneda).  相似文献   

2.
Danon disease ('lysosomal glycogen storage disease with normal acid maltase') is characterized by a cardiomyopathy, myopathy and variable mental retardation. Mutations in the coding sequence of the lysosomal-associated membrane protein 2 (LAMP-2) were shown to cause a LAMP-2 deficiency in patients with Danon disease. LAMP-2 deficient mice manifest a similar vacuolar cardioskeletal myopathy. In addition to the patient reports LAMP-2 deficiency in mice causes pancreatic, hepatocytic, endothelial and leucocyte vacuolation. LAMP-2 deficient mice represent a valuable animal model of Danon disease. They will further be used to study the exact role of LAMP-2 in autophagy and to analyse the consequences of an impaired autophagic pathway in various tissues.  相似文献   

3.

Background

Some patients treated with chloroquine, hydroxychloroquine, or colchicine develop autophagic vacuolar myopathy, the diagnosis of which currently requires electron microscopy. The goal of the current study was to develop an immunohistochemical diagnostic marker for this pathologic entity.

Methodology

Microtubule-associated protein light chain 3 (LC3) has emerged as a robust marker of autophagosomes. LC3 binds p62/SQSTM1, an adapter protein that is selectively degraded via autophagy. In this study, we evaluated the utility of immunohistochemical stains for LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar myopathy. The staining was performed on archival muscle biopsy material, with subject assignment to normal control, drug-treated control, and autophagic myopathy groups based on history of drug use and morphologic criteria.

Principal Findings

In all drug-treated subjects, but not in normal controls, LC3 and p62 showed punctate staining characteristic of autophagosome buildup. In the autophagic myopathy subjects, puncta were coarser and tended to coalesce into linear structures aligned with the longitudinal axis of the fiber, often in the vicinity of vacuoles. The percentage of LC3- and p62-positive fibers was significantly higher in the autophagic myopathy group compared to either the normal control (p<0.001) or the drug-treated control group (p<0.05). With the diagnostic threshold set between 8% and 15% positive fibers (depending on the desired level of sensitivity and specificity), immunohistochemical staining for either LC3 or p62 could be used to identify subjects with autophagic vacuolar myopathy within the drug-treated subject group (p≤0.001).

Significance

Immunohistochemistry for LC3 and p62 can facilitate tissue-based diagnosis of drug-induced autophagic vacuolar myopathies. By limiting the need for electron microscopy (a time consuming and costly technique with high specificity, but low sensitivity), clinical use of these markers will improve the speed and accuracy of diagnosis, resulting in significantly improved clinical care.  相似文献   

4.
《Autophagy》2013,9(4):318-320
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.1 Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and pre-clinical studies, has proven more difficult than anticipated.2-4 The work published in Annals of Neurology5 was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found thatthe cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.

Addendum to:

Dysfunction of Endocytic and Autophagic Pathways in a Lysosomal Storage Disease

Tokiko Fukuda, Lindsay Ewan, Martina Bauer, Robert J. Mattaliano, Kristien Zaal,Evelyn Ralston, Paul H. Plotz and Nina Raben

Ann Neurol 2006; 59:700-8  相似文献   

5.
《Autophagy》2013,9(12):2115-2125
Colchicine treatment is associated with an autophagic vacuolar myopathy in human patients. The presumed mechanism of colchicine-induced myotoxicity is the destabilization of the microtubule system that leads to impaired autophagosome-lysosome fusion and the accumulation of autophagic vacuoles. Using the MTOR inhibitor rapamycin we augmented colchicine’s myotoxic effect by increasing the autophagic flux; this resulted in an acute myopathy with muscle necrosis. In contrast to myonecrosis induced by cardiotoxin, myonecrosis induced by a combination of rapamycin and colchicine was associated with accumulation of autophagic substrates such as LC3-II and SQSTM1; as a result, autophagic vacuoles accumulated in the center of myofibers, where LC3-positive autophagosomes failed to colocalize with the lysosomal protein marker LAMP2. A similar pattern of central LC3 accumulation and myonecrosis is seen in human patients with colchicine myopathy, many of whom have been treated with statins (HMGCR/HMG-CoA reductase inhibitors) in addition to colchicine. In mice, cotreatment with colchicine and simvastatin also led to muscle necrosis and LC3 accumulation, suggesting that, like rapamycin, simvastatin activates autophagy. Consistent with this, treatment of mice with four different statin medications enhanced autophagic flux in skeletal muscle in vivo. Polypharmacy is a known risk factor for toxic myopathies; our data suggest that some medication combinations may simultaneously activate upstream autophagy signaling pathways while inhibiting the degradation of these newly synthesized autophagosomes, resulting in myotoxicity.  相似文献   

6.
Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8.  相似文献   

7.
The lysosomal membrane proteins LAMP-1 and LAMP-2 are estimated to contribute to about 50% of all proteins of the lysosome membrane. Surprisingly, mice deficient in either LAMP-1 or LAMP-2 are viable and fertile. However, mice deficient in both LAMP-1 and LAMP-2 have an embryonic lethal phenotype. These results show that these two major lysosomal membrane proteins share common functions in vivo. However, LAMP-2 seems to have more specific functions since LAMP-2 single deficiency has more severe consequences than LAMP-1 single deficiency. Mutations in LAMP-2 gene cause a lysosomal glycogen storage disease, Danon disease, in humans. LAMP-2 deficient mice replicate the symptoms found in Danon patients including accumulation of autophagic vacuoles in heart and skeletal muscle. In embryonic fibroblasts, mutual disruption of both LAMPs is associated with an increased accumulation of autophagic vacuoles and unesterified cholesterol, while protein degradation rates are not affected. These results clearly show that the LAMP proteins fulfil functions far beyond the initially suggested roles in maintaining the structural integrity of the lysosomal compartment.  相似文献   

8.
ABSTRACT

Seeing is believing. The direct observation of GFP-Atg8 vacuolar delivery under confocal microscopy is one of the most useful end-point measurements for monitoring yeast macroautophagy/autophagy. However, manually labelling individual cells from large-scale sets of images is time-consuming and labor-intensive, which has greatly hampered its extensive use in functional screens. Herein, we conducted a time-course analysis of nitrogen starvation-induced autophagy in wild-type and knockout mutants of 35 AuTophaGy-related (ATG) genes in Saccharomyces cerevisiae and obtained 1,944 confocal images containing > 200,000 cells. We manually labelled 8,078 autophagic and 18,493 non-autophagic cells as a benchmark dataset and developed a new deep learning tool for autophagy (DeepPhagy), which exhibited superior accuracy in recognizing autophagic cells compared to other existing methods, with an area under the curve (AUC) value of 0.9710 from 10-fold cross-validations. We further used DeepPhagy to automatically analyze all the images and quantitatively classified the autophagic phenotypes of the 35 atg knockout mutants into 3 classes. The high consistency in our computational and biochemical results indicated the reliability of DeepPhagy for measuring autophagic activity. Moreover, we used DeepPhagy to analyze 3 additional types of autophagic phenotypes, including the targeting of Atg1-GFP to the vacuole, the vacuolar delivery of GFP-Atg19, and the disintegration of autophagic bodies indicated by GFP-Atg8, all with satisfying accuracies. Taken together, our study not only enables the GFP-Atg8 ?uorescence assay to become a quantitative measurement for analyzing autophagic phenotypes in S. cerevisiae but also demonstrates that deep learning-based methods could potentially be applied to different types of autophagy.

Abbreviations: Ac: accuracy; ALP: alkaline phosphatase; ALR: autophagic lysosomal reformation; ATG: AuTophaGy-related; AUC: area under the curve; CNN: convolutional neural network; Cvt: cytoplasm-to-vacuole targeting; DeepPhagy: deep learning for autophagy; fc_2: second fully connected; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3 beta; HAT: histone acetyltransferase; HemI: Heat map Illustrator; JRE: Java Runtime Environment; KO: knockout; LRN: local response normalization; MCC: Mathew Correlation Coefficient; OS: operating system; PAS: phagophore assembly site; PC: principal component; PCA: principal component analysis; PPI: protein-protein interaction; Pr: precision; QPSO: Quantum-behaved Particle Swarm Optimization; ReLU: rectified linear unit; RF: random forest; ROC: receiver operating characteristic; ROI: region of interest; SD: systematic derivation; SGD: stochastic gradient descent; Sn: sensitivity; Sp: specificity; SRG: seeded region growing; t-SNE: t-distributed stochastic neighbor embedding; 2D: 2-dimensional; WT: wild-type.  相似文献   

9.
In LAMP-2-deficient mice autophagic vacuoles accumulate in many tissues, including liver, pancreas, muscle, and heart. Here we extend the phenotype analysis using cultured hepatocytes. In LAMP-2-deficient hepatocytes the half-life of both early and late autophagic vacuoles was prolonged as evaluated by quantitative electron microscopy. However, an endocytic tracer reached the autophagic vacuoles, indicating delivery of endo/lysosomal constituents to autophagic vacuoles. Enzyme activity measurements showed that the trafficking of some lysosomal enzymes to lysosomes was impaired. Immunoprecipitation of metabolically labeled cathepsin D indicated reduced intracellular retention and processing in the knockout cells. The steady-state level of 300-kDa mannose 6-phosphate receptor was slightly lower in LAMP-2-deficient hepatocytes, whereas that of 46-kDa mannose 6-phosphate receptor was decreased to 30% of controls due to a shorter half-life. Less receptor was found in the Golgi region and in vesicles and tubules surrounding multivesicular endosomes, suggesting impaired recycling from endosomes to the Golgi. More receptor was found in autophagic vacuoles, which may explain its shorter half-life. Our data indicate that in hepatocytes LAMP-2 deficiency either directly or indirectly leads to impaired recycling of 46-kDa mannose 6-phosphate receptors and partial mistargeting of a subset of lysosomal enzymes. Autophagic vacuoles may accumulate due to impaired capacity for lysosomal degradation.  相似文献   

10.
《Autophagy》2013,9(6):600-603
The IκappaB kinase (IKK)/NF-κappaB signaling pathway plays an essential role in the development and survival of many types of cancers including adult T-cell leukemia (ATL) caused by the human T-cell leukemia virus type I (HTLV-I) infection. Accordingly, targeting NF-κappaB provides an attractive strategy for cancer therapy. We recently found that specific inhibition of Hsp90 by geldanamycin (GA) results in autophagic degradation of IKK and NF-κappaB-inducing kinase (NIK), an upstream kinase of IKK, and inactivation of NF-κappaB in various cell lines. Here, we further report that GA inhibition of Hsp90 also led to IKK autophagic degradation and NF-κappaB inhibition in both HTLV-transformed T cells and ATL-derived cell lines. Importantly, GA treatment led to efficient apoptosis of these malignant cells, whereas inhibition of autophagic degradation of IKK significantly ameliorated the cytotoxic effect of GA. These findings thus not only provide mechanistic insights into the tumor suppression function of autophagy and the anti-tumor activity of GA, but also suggest an immediate therapeutic strategy for ATL and other diseases associated with NF-κappaB activation by targeting autophagic degradation of the central NF-kappaB activating kinases.

Addendum to:

Hsp90 Inhibition Results in Autophagy-Mediated Proteasome-Independent Degradation of IκappaB Kinase (IKK)

G. Qing, P. Yan and G. Xiao

Cell Res 2006; 16:895-901

and

Hsp90 Regulates Processing of NF-κappaB2 p100 Involving Protection of NF-κappaB-Inducing Kinase (NIK) from Autophagy-Mediated Degradation

G. Qing, P. Yan, Z. Qu, H. Liu and G. Xiao

Cell Res 2007; 17:520-30  相似文献   

11.
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alpha-glucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.Key words: Pompe disease, lysosomal glycogen storage, myopathy, Atg7, enzyme replacement therapy  相似文献   

12.
Roark EA  Haldar K 《PloS one》2008,3(10):e3538
Salmonella is an intracellular bacterial pathogen that replicates within a membrane-bound vacuole in host cells. The major lysosomal membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are recruited to the Salmonella-containing vacuole as well as Salmonella- associated filaments (Sifs) that emerge from the vacuole. LAMP-1 is a dominant membrane marker for the vacuole and Sifs. Its colocalization with both is dependent on a major secreted bacterial virulence protein, SifA. Here, we show that SifA is required for the recruitment of LAMP-2 and can be used as a second independent marker for both the bacterial vacuolar membrane and Sifs. Further, RNAi studies revealed that in LAMP-1 depleted cells, the bacteria remain membrane bound as measured by their association with LAMP-2 protein. In contrast, LAMP-2 depletion increased the amount of LAMP-1 free bacteria. Together, the data suggests that despite its abundance, LAMP-1 is not essential, but LAMP-2 may be partially important for the Salmonella-containing vacuolar membrane.  相似文献   

13.
《Autophagy》2013,9(3):228-230
Bafilomycin A1 (BafA1), which is a member of the plecomacrolide sub-class of macrolide antibiotics, has differential, concentration-dependent effects on neuronal cell viability. When used at high concentrations, BafA1 inhibits vacuolar ATPase (V-ATPase), promotes the accumulation of autophagic vacuoles and triggers Bax-dependent apoptosis. These effects are similar to those induced by the lysosomotropic agent chloroquine. Conversely, at concentrations below its reported ability to completely inhibit V-ATPase, BafA1 dramatically attenuates chloroquine-induced apoptosis. The protective effects of BafA1 appear to be independent of the chloroquine-induced accumulation of autophagosomes. Rather, BafA1 appears to inhibit events downstream of chloroquine-induced autophagosome accumulation, such as the loss mitochondrial or lysosomal integrity. Our finding that BafA1 inhibits the death of neurons induced by autophagic stress suggests a potentially novel mechanism of action apart from its ability to inhibit V-ATPase. Here we provide further evidence of neuroprotection against chloroquine-induced death by plecomacrolide antibiotics that are structurally similar to BafA1, including bafilomycin B1 and concanamycin A, and discuss potential mechanism(s) of neuroprotection against autophagic stress.

Addendum to:

Bafilomycin A1 Inhibits Chloroquine-Induced Death of Cerebellar Granule Neurons

John J. Shacka, Barbara J. Klocke, Masahiro Shibata, Yasuo Uchiyama, Geeta Datta, Robert E. Schmidt and Kevin A. Roth

Mol Pharmacol 2006; 69:1125-36  相似文献   

14.
15.
Mitochondria-induced oxidative stress and flawed autophagy are common features of neurodegenerative and lysosomal storage diseases (LSDs). Although defective autophagy is particularly prominent in Pompe disease, mitochondrial function has escaped examination in this typical LSD. We have found multiple mitochondrial defects in mouse and human models of Pompe disease, a life-threatening cardiac and skeletal muscle myopathy: a profound dysregulation of Ca2+ homeostasis, mitochondrial Ca2+ overload, an increase in reactive oxygen species, a decrease in mitochondrial membrane potential, an increase in caspase-independent apoptosis, as well as a decreased oxygen consumption and ATP production of mitochondria. In addition, gene expression studies revealed a striking upregulation of the β 1 subunit of L-type Ca2+ channel in Pompe muscle cells. This study provides strong evidence that disturbance of Ca2+ homeostasis and mitochondrial abnormalities in Pompe disease represent early changes in a complex pathogenetic cascade leading from a deficiency of a single lysosomal enzyme to severe and hard-to-treat autophagic myopathy. Remarkably, L-type Ca2+channel blockers, commonly used to treat other maladies, reversed these defects, indicating that a similar approach can be beneficial to the plethora of lysosomal and neurodegenerative disorders.  相似文献   

16.
《Autophagy》2013,9(2):149-150
Autophagy is a major survival mechanism for eukaryotes to recycle cellular nutrients during stress conditions (such as nutrient limitation, or the accumulation of damaged organelles). We recently revealed a molecular mechanism by which Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Atg22 is not directly required for autophagic body breakdown, in contrast to previously reported data. Instead, we found that Atg22, Avt3 and Avt4 are partially redundant vacuolar effluxers, which mediate the efflux of leucine and other amino acids resulting from autophagy.

Addendum to:

Atg22 Recycles Amino Acids to Link the Degradative and Recycling Functions of Autophagy

Zhifen Yang, Ju Huang, Jiefei Geng, Usha Nair and Daniel J. Klionsky

Mol Biol Cell 2006; Oct. 4  相似文献   

17.
Bcl2-associated athanogene 3 (BAG3) mutations have been reported to cause the myofibrillar myopathy (MFM) which shows progressive limb muscle weakness, respiratory failure, and cardiomyopathy. Myopathy patients with BAG3 mutation are very rare. We described a patient showing atypical phenotypes. We aimed to find the genetic cause of Korean patients with sensory motor polyneuropathy, myopathy and rigid spine. We performed whole exome sequencing (WES) with 423 patients with sensory motor polyneuropathy. We found BAG3 mutation in one patient with neuropathy, myopathy and rigid spine syndrome, and performed electrophysiological study, whole body MRI and muscle biopsy on the patient. A de novo heterozygous p.Pro209Leu (c.626C>T) mutation in BAG3 was identified in a female myopathy. She first noticed a gait disturbance and spinal rigidity at the age of 11, and serum creatine kinase levels were elevated ninefolds than normal. She showed an axonal sensory-motor polyneuropathy like Charcot–Marie–Tooth disease (CMT), myopathy, rigid spine and respiratory dysfunction; however, she did not show any cardiomyopathy, which is a common symptom in BAG3 mutation. Lower limb MRI and whole spine MRI showed bilateral symmetric fatty atrophy of muscles at the lower limb and paraspinal muscles. When we track traceable MRI 1 year later, the muscle damage progressed slowly. As far as our knowledge, this is the first Korean patient with BAG3 mutation. We described a BAG3 mutation patient with atypical phenotype of CMT and myopathy, and those are expected to broaden the clinical spectrum of the disease and help to diagnose it.  相似文献   

18.
Mice double deficient in LAMP-1 and -2 were generated. The embryos died between embryonic days 14.5 and 16.5. An accumulation of autophagic vacuoles was detected in many tissues including endothelial cells and Schwann cells. Fibroblast cell lines derived from the double-deficient embryos accumulated autophagic vacuoles and the autophagy protein LC3II after amino acid starvation. Lysosomal vesicles were larger and more peripherally distributed and showed a lower specific density in Percoll gradients in double deficient when compared with control cells. Lysosomal enzyme activities, cathepsin D processing and mannose-6-phosphate receptor expression levels were not affected by the deficiency of both LAMPs. Surprisingly, LAMP-1 and -2 deficiencies did not affect long-lived protein degradation rates, including proteolysis due to chaperone-mediated autophagy. The LAMP-1/2 double-deficient cells and, to a lesser extent, LAMP-2 single-deficient cells showed an accumulation of unesterified cholesterol in endo/lysosomal, rab7, and NPC1 positive compartments as well as reduced amounts of lipid droplets. The cholesterol accumulation in LAMP-1/2 double-deficient cells could be rescued by overexpression of murine LAMP-2a, but not by LAMP-1, highlighting the more prominent role of LAMP-2. Taken together these findings indicate partially overlapping functions for LAMP-1 and -2 in lysosome biogenesis, autophagy, and cholesterol homeostasis.  相似文献   

19.
《Autophagy》2013,9(4):396-398
Distal myopathy with rimmed vacuoles (DMRV) or hereditary inclusion body myopathy (hIBM) is an autosomal recessive disorder clinically characterized by weakness that initially involves the distal muscles, although other muscles can be affected as well. Pathological hallmarks include the presence of rimmed vacuoles (RVs) and intracellular Congo red-positive depositions in vacuolated or non-vacuolated fibers. Mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes the rate-limiting enzyme in sialic acid biosynthesis, are causative of DMRV/hIBM. Recently, we have generated a mouse model (Gne-/-hGNEV572L-Tg ) for this disease, and have shown that these mice exhibit hyposialylation and intracellular amyloid deposition before the characteristic RVs are detected, indicating that autophagy is a downstream phenomenon to hyposialylation and amyloid deposition in DMRV/hIBM.

Addendum to:

A Gne Knockout Mouse Expressing Human V572L Mutation Develops Features Similar to Distal Myopathy with Rimmed Vacuoles or Hereditary Inclusion Body Myopathy

M.C. Malicdan, S. Noguchi, I. Nonaka, Y.K. Hayashi and I. Nishino

Hum Mol Genet 2007; 16:115-28  相似文献   

20.
Yuchen Lei 《Autophagy》2020,16(8):1363-1365
ABSTRACT

A key feature of macroautophagy (hereafter autophagy) is the formation of the phagophore, a double-membrane compartment sequestering cargos and finally maturing into a vesicle termed an autophagosome; however, where these membranes originate from is not clear. In a previous study, researchers from the Rubinsztein lab proposed a model in which the autophagosome can evolve from the RAB11A-positive recycling endosome. In their recent paper, they determine that DNM2 (dynamin 2) functions in scission of the recycling endosome, and the release of the autophagosome precursor. These findings explain how the centronuclear myopathy (CNM) mutation in DNM2 results in the accumulation of immature autophagic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号