首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-rich plasma (PRP) is a platelet concentrate in a small volume of plasma. It is highly enriched in growth factors able to stimulate the migration and growth of bone-forming cells. PRP is often used in clinical applications, as dental surgery and fracture healing. Platelet derived growth factor (PDGF), is highly concentrated in PRP and it was shown in our previous studies to provide the chemotactic stimulus to SaOS-2 osteoblasts to move in a microchemotaxis assay. Aim of the present studies is to analyze the effects of a PRP pretreatment (short time course: 30–150 min) of SaOS-2 cells with PRP on the organization of actin cytoskeleton, the main effector of cell mobility. The results indicate that a pretreatment with PRP increases chemokinesis and chemotaxis and concomitantly induces the organization of actin microfilaments, visualized by immunocytochemistry, in a directionally elongated phenotype, which is characteristic of the cells able to move. PRP also produces a transient increase in the expression of PGDF α receptor. This reorganization is blocked by the immunoneutralization of PDGF demonstrating the responsibility of this growth factor in triggering the mechanisms responsible for cellular movements.  相似文献   

2.
Our studies show that in connective tissue cells, induction of PGE2 synthesis in response to IL-1 requires costimulation with platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). In cells incubated in medium containing fresh serum, IL-1 induced a dose-dependent synthesis of PGE2. However, when the cells were incubated in medium containing low serum or platelet poor plasma (lacking PDGF), IL-1 alone failed to induce PGE2 synthesis. PGE2 synthesis was restored when platelet poor plasma was supplemented with PDGF. Addition of PDGF or FGF together with IL-1 resulted in a 14- and 66-fold stimulation of PGE2 synthesis, respectively. Stimulation was dependent on the concentration of both IL-1 and the growth factor. PGE2 synthesis was also dependent on the synthesis of new proteins. In cells simultaneously treated with IL-1 and PDGF, PGE2 synthesis was initiated after a lag of 2 to 3 h, proceeded first with a rapid rate for 6 h, and then with a slower rate through 24 h. PGE2 synthesis during the latter, slower phase was greatly enhanced by pretreatment with PDGF, but not by pretreatment with IL-1. PDGF pretreatment also resulted in maintenance of 10- to 12-fold higher cell surface IL-1-binding during this phase. These data provide evidence for potentially novel interactions between PDGF and IL-1 activities, one of which is the modulation of IL-1 receptors by PDGF. Furthermore, these studies suggest that by virtue of their effect on IL-1 activities, PDGF and FGF may play additional roles in connective tissues, including an indirect role in inflammatory processes.  相似文献   

3.
Platelet-rich plasma (PRP) has been widely used in clinical practice for more than 20 years because it causes the release of many growth factors. However, the burst release pattern and short release period of PRP have become obstacles to its application. An optimal controllable release system is an urgent need for researchers. This study investigated whether collagen/PRP (COL/PRP) scaffolds can serve as a vehicle for the controllable release of growth factors. We fabricated a novel scaffold that integrates PRP activated by thrombin or collagen into type I collagen. The mechanical properties, cytotoxicity, and transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) content were evaluated. Our results demonstrate that the COL/PRP scaffolds were not cytotoxic to L-929 fibroblasts. The PDGF and FGF content in the thrombin group was at a higher level and lasted for a long period of time. Collagen and thrombin played the same role in the release of TGF-β1 and VEGF. These data suggest that the novel COL/PRP scaffolds provide a carrier for the controllable release of growth factors and may be used in tissue- regenerative therapies.  相似文献   

4.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

5.
Heterotrimeric G proteins are critical transducers of cellular signaling. In addition to their classic roles in relaying signals from G protein-coupled receptors (GPCRs), heterotrimeric G proteins also mediate physiological functions from non-GPCRs. Previously, we have shown that Gα(13), a member of the heterotrimeric G proteins, is essential for growth factor receptor-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. These Gα(13)-mediated dorsal ruffle turnover and cell migration by growth factors acting on their receptor tyrosine kinases (RTKs) are independent of GPCRs. However, the mechanism by which RTKs signal to Gα(13) is not known. Here, we show that cholinesterase-8A (Ric-8A), a nonreceptor guanine nucleotide exchange factor for some heterotrimeric G proteins, is critical for coupling RTKs to Gα(13). Down-regulation of Ric-8A protein levels in cells by RNA interference slowed down platelet-derived growth factor (PDGF)-induced dorsal ruffle turnover and inhibited PDGF-initiated cell migration. PDGF was able to increase the activity of Ric-8A in cells. Furthermore, purified Ric-8A proteins interact directly with purified Gα(13) protein in a nucleotide-dependent manner. Deficiency of Ric-8A prevented the translocation of Gα(13) to the cell cortex. Hence, Ric-8A is critical for growth factor receptor-induced actin cytoskeletal reorganization.  相似文献   

6.
Mesoderm induction is one of the major events of early vertebrate embryonic patterning. It appears to be controlled by sequential and combinatorial actions of several kinds of peptide growth factors. These include activin, fibroblast growth factor (FGF), and transforming growth factor-beta (TGF-beta), among others. In the present study, the function of platelet-derived growth factor (PDGF) in early Xenopus laevis embryogenesis was investigated. In the animal-cap assay, PDGF caused pre-ectodermal tissue to develop a mesoderm specific morphology (elongation) and to express the mesoderm marker genes, MyoD family and alpha-cardiac actin. In addition, two other genes were expressed -related serum response factor SL1 (a dorsal mesodermal marker) and myosin light chain (MLC2-heart marker). A role for PDGF in normal (in vivo) mesoderm induction is implicated because injection of PDGF receptor alpha antisense RNA into 2-cell embryos erased the animal cap's mesoderm marker expression. Those injected embryos also exhibited morphological abnormalities including incomplete gastrulation, failure of neural fold closing, and abnormal somitogenesis.  相似文献   

7.
The role of platelet-derived growth factor (PDGF) in the control of smooth muscle cell (SMC) differentiation was explored in vitro by examining its effects on expression of the smooth muscle (SM) specific contractile protein SM alpha actin in cultured rat aortic SMC. Quiescent, postconfluent SMC express maximal levels of alpha actin and responded to human platelet-derived growth factor (partially purified from platelets) by entering the cell cycle and undergoing approximately one synchronous round of DNA synthesis. Concomitantly, these cultures exhibited a marked reduction in alpha actin synthesis. Chronic treatment with PDGF (72 hours at 8 or 12 hour intervals) was associated with a transient increase in thymidine labeling index and a decrease in alpha actin expression. Interestingly, between 48 and 72 hours following initial treatment, thymidine labeling indices returned to near control levels while SM alpha actin expression remained depressed. This effect was reversible; fractional alpha actin synthesis increased immediately after PDGF removal. When subsequently stimulated with 10% fetal bovine serum (FBS), cells chronically pretreated with PDGF entered S phase approximately 4 hours earlier than cells pretreated with PDGF vehicle, consistent with the idea that the maintained suppression of alpha actin synthesis in SMC subjected to chronic PDGF treatment was associated with partial cell cycle transit. Chronic treatment with highly purified recombinant PDGF-BB elicited similar effects on alpha actin synthesis and partial cell cycle transit. Flow cytometric analysis of chronic PDGF-treated SMC demonstrated a 25% increase in forward angle light scatter, an index of cell size. These data implicate a possible role for PDGF in regulation of SMC differentiation and suggest a potentially important role for this mitogen in the phenotypic modulation accompanying SMC growth and in mediation of the cellular hypertrophy associated with cell cycle progression.  相似文献   

8.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

9.

Background

Bone marrow aspiration concentrate (BMAC) may possess a high potency for cartilage and osseous defect healing because it contains stem cells and multiple growth factors. Alternatively, platelet rich plasma (PRP), which contains a cocktail of multiple growth factors released from enriched activated thrombocytes may potentially stimulate the mesenchymal stem cells (MSCs) in bone marrow to proliferate and differentiate.

Methods

A critical size osteochondral defect (10×6 mm) in both medial femoral condyles was created in 14 Goettinger mini-pigs. All animals were randomized into the following four groups: biphasic scaffold alone (TRUFIT BGS, Smith & Nephew, USA), scaffold with PRP, scaffold with BMAC and scaffold in combination with BMAC and PRP. After 26 weeks all animals were euthanized and histological slides were cut, stained and evaluated using a histological score and immunohistochemistry.

Results

The thrombocyte number was significantly increased (p = 0.049) in PRP compared to whole blood. In addition the concentration of the measured growth factors in PRP such as BMP-2, BMP-7, VEGF, TGF-β1 and PDGF were significantly increased when compared to whole blood (p<0.05). In the defects of the therapy groups areas of chondrogenic tissue were present, which stained blue with toluidine blue and positively for collagen type II. Adding BMAC or PRP in a biphasic scaffold led to a significant improvement of the histological score compared to the control group, but the combination of BMAC and PRP did not further enhance the histological score.

Conclusions

The clinical application of BMAC or PRP in osteochondral defect healing is attractive because of their autologous origin and cost-effectiveness. Adding either PRP or BMAC to a biphasic scaffold led to a significantly better healing of osteochondral defects compared with the control group. However, the combination of both therapies did not further enhance healing.  相似文献   

10.
In vitro produced, 2-cell bovine embryos were cultured in serum-free medium supplemented with various combinations of growth factors to test the hypothesis that these polypeptide factors are able to signal preimplantation development. The developmental arrest that occurs during the 8-cell stage with typical culture methods might be relieved by a growth factor-dependent mechanism that would stimulate expression of the embryonic genome, thereby mimicking events that occur in vivo in the oviduct during the fourth cell cycle (8- to 16-cell stage). Subsequently, other growth factors might promote compaction and blastulation, processes which normally occur in the uterus. The effects of growth factors on early embryos were evaluated using phase contrast microscopy to monitor progression to the 8-cell stage, completion and duration of the fourth cell cycle, and blastocyst formation. Platelet derived growth factor (PDGF) promoted development beyond the 16-cell stage in 39.1% of the 2-cell embryos examined in all experiments. The duration of the fourth cell cycle among these embryos was approximately 26 hours. During development after the 16-cell stage, PDGF reduced the proportion of embryos bastulating from 12.7% to 5.8%; in contrast, transforming growth factor alpha (TGF alpha), acting during the same developmental time period, increased the proportion of embryos blastulating from 8.6% to 40.6%. These results, using serum-free medium, indicated that PDGF signalled completion of the fourth cell cycle. TGF alpha, and perhaps basic fibroblast growth factor (bFGF), promoted blastulation of 16-cell embryos during subsequent culture.  相似文献   

11.
SH2-B is required for growth hormone-induced actin reorganization   总被引:5,自引:0,他引:5  
The Src homology-2 (SH2) domain-containing protein SH2-Bbeta is a substrate of the growth hormone (GH) receptor-associated tyrosine kinase JAK2. Here we tested whether SH2-Bbeta is involved in GH regulation of the actin cytoskeleton. Based on cell fractionation and confocal microscopy, we find SH2-Bbeta present at the plasma membrane and in the cytosol. SH2-Bbeta colocalized with filamentous actin in GH and platelet-derived growth factor (PDGF)-induced membrane ruffles. To test if SH2-Bbeta is required for actin reorganization, we transiently overexpressed wild-type or mutant SH2-Bbeta in 3T3-F442A cells and assayed for GH- and PDGF-induced membrane ruffling and fluid phase pinocytosis. Overexpression of wild-type SH2-Bbeta enhanced ruffling and pinocytosis produced by submaximal GH but not submaximal PDGF. Point mutant SH2-Bbeta (R555E) and truncation mutant DeltaC555, both lacking a functional SH2 domain, inhibited membrane ruffling and pinocytosis induced by GH and PDGF. Mutant DeltaN504, which possesses a functional SH2 domain and enhances JAK2 kinase activity in overexpression systems, also inhibited GH-stimulated membrane ruffling. DeltaN504 failed to inhibit GH-induced nuclear localization of Stat5B, indicating JAK2 is active in these cells. Taken together, these results show that SH2-Bbeta is required for GH-induced actin reorganization by a mechanism discrete from the action of SH2-Bbeta as a stimulator of JAK2 kinase activity.  相似文献   

12.
Although the cytoskeletal network is important for insulin-induced glucose uptake, several studies have assessed the effects of microtubule disruption on glucose transport with divergent results. Here, we investigated the effects of microtubule-depolymerizing reagent, nocodazole and colchicine, on GLUT4 translocation in 3T3-L1 adipocytes. After nocodazole treatment to disrupt microtubules, GLUT4 vesicles were dispersed from the perinuclear region in the basal state, and insulin-induced GLUT4 translocation was partially inhibited by 20-30%, consistent with other reports. We found that platelet-derived growth factor (PDGF), which did not stimulate GLUT4 translocation in intact cells, was surprisingly able to enhance GLUT4 translocation to approximately 50% of the maximal insulin response, in nocodazole-treated cells with disrupted microtubules. This effect of PDGF was blocked by pretreatment with wortmannin and attenuated in cells pretreated with cytochalasin D. Using confocal microscopy, we found an increased co-localization of GLUT4 and F-actin in nocodazole-treated cells upon PDGF stimulation compared with control cells. Furthermore, microinjection of small interfering RNA targeting the actin-based motor Myo1c, but not the microtubule-based motor KIF3, significantly inhibited both insulin- and PDGF-stimulated GLUT4 translocation after nocodazole treatment. In summary, our data suggest that 1) proper perinuclear localization of GLUT4 vesicles is a requirement for insulin-specific stimulation of GLUT4 translocation, and 2) nocodazole treatment disperses GLUT4 vesicles from the perinuclear region allowing them to engage insulin and PDGF-sensitive actin filaments, which can participate in GLUT4 translocation in a phosphatidylinositol 3-kinase-dependent manner.  相似文献   

13.
Background: Stem cell culture for regenerative medicine needs platelet rich plasma (PRP) as fetal bovine/calf serum (FBS/FCS) substitute. However, the various studies used various protocols in preparing and processing the PRP. This study aimed to compare and conclude the most effective and efficient protocol. Methods: we searched in vitro studies that used human PRP as FBS/FCS substitute to culture human cells, and compared the various available protocols to identify the easiest and effective protocols for the preparation of PRP and the release of the growth factors (GFs) to support the highest cell growth in stem cell culture. Results: ten studies fulfilled the selection criteria and were included in the analysis. Discussion: Almost all studies on bone marrow mesenchymal stem cell (BM-MSC) and adipose stem cell (AT-SC) showed that platelet lysate and/or activated platelet releasate were superior or at least the same as either FBS or FCS, except for one study that got different results on human AT-SC. Several studies showed that either 5% activated PRP (aPRP) or platelet lysate (PL) was sufficient to support cell growth, or even better when they were compared to 10% FBS, while higher concentrations were counterproductive. However, some studies showed that 10% aPRP or PL was needed. The difference between studies was due to the difference in either the PRP preparation from blood and in the PRP processing to release the GFs, which yield various GF concentrations. Conclusion: In conclusion, studies are needed to reveal the optimal final platelet counts for the various PRP processing methods for various kinds of cells. The easiest PRP processing is freezing to -20?C followed by thawing, or thrombin activation using a final concentration of 100U/mL.  相似文献   

14.
Fetuin, a major protein of fetal calf serum, partially purified by the method of Pedersen, stimulated growth of aortic smooth muscle cells. More highly purified fetuin preparations stimulated growth less than Pedersen fetuin, as previously described for other cell types, suggesting that this activity is due to a contaminant. Recently bovine alpha 2-macroglobulin or "Embryonin" has been proposed as the mitogenic component of crude fetuin preparations. We found that active fetuin preparations did contain alpha 2-macroglobulin that stimulated smooth muscle cell growth. However, alpha 2-macroglobulin purified directly from platelet-poor bovine plasma or fetuin purified from Pedersen fetuin by gel filtration lacked appreciable mitogenic effect on smooth muscle cells. Since alpha 2-macroglobulin can bind platelet-derived growth factor (PDGF), and since highly acidic fetuin might bind the very basic PDGF molecule non-specifically, we measured the PDGF content of various fetuin preparations and found a good correlation between the PDGF content and mitogenic activity. Gel filtration experiments demonstrated that in Pedersen fetuin PDGF occurred both free, and in association with alpha 2-macroglobulin. We conclude that the principal mitogenic component for smooth muscle cells in crude fetuin preparations is PDGF, since purified bovine alpha 2-macroglobulin or fetuin do not appreciably affect growth of these cells. These results help to resolve a long-standing controversy regarding the nutrition of cultured cells. In addition, we suggest that before alpha 2-macroglobulin or "Embryonin" is accepted as a bona fide growth factor for a given cell type, the role of contamination with PDGF should be assessed.  相似文献   

15.
16.
BP3T3, a clonal benzo(a)pyrene-transformed BALB/c-3T3 cell line, is conditionally responsive to growth factor stimulation. Density arrested cell populations deprived of growth factors by pretreatment with 0.5% platelet-poor plasma synthesized DNA both in response to ng/ml concentrations of PDGF, EGF, and somatomedin C, and in response to insulin, plasma, and serum. The above agents acted singly to induce DNA synthesis, but synergism is suggested because a higher percentage of cells were stimulated to enter the S phase when the growth factors were added in combination. Desensitization to growth factors occurred when cultures were pretreated with the high concentration of growth factors present in 10% serum (or plasma). In desensitized cultures none of the above agents, added singly or in combination, stimulated DNA synthesis. This effect appears to be global because pretreatment with one growth factor (e.g., insulin) inhibited the action of another (e.g., PDGF). Cell density appears to play a critical role in regulating DNA synthesis. Unlike nontransformed BALB/c-3T3 cells whose density is regulated by the serum concentration, the density of BP3T3 cells reached a plateau when cultures were grown in a serum (or plasma) concentration of 3% or greater. Such density arrested cultures were growth factor unresponsive; however, the cells rapidly responded to growth factors by synthesizing DNA and replicating when reseeded at a lower cell density. Thus the growth of BP3T3 cells is regulated by both growth factors and cell density.  相似文献   

17.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

18.
Ethanol induces severe alterations in membrane trafficking in hepatocytes and astrocytes, the molecular basis of which is unclear. One of the main candidates is the cytoskeleton and the molecular components that regulate its organization and dynamics. Here, we examine the effect of chronic exposure to ethanol on the organization and dynamics of actin and microtubule cytoskeletons and glucose uptake in rat astrocytes. Ethanol-treated cells cultured in either the presence or absence of fetal calf serum showed a significant increase in 2-deoxyglucose uptake. Ethanol also caused alterations in actin organization, consisting of the dissolution of stress fibres and the appearance of circular filaments beneath the plasma membrane. When lysophosphatidic acid (LPA), which is a normal constituent of serum and a potent intercellular lipid mediator with growth factor and actin rearrangement activities, was added to ethanol-treated astrocytes cultured without fetal calf serum, it induced the re-appearance of actin stress fibres and the normalization of 2-deoxyglucose uptake. Furthermore, ethanol also perturbed the microtubule dynamics, which delayed the recovery of the normal microtubule organization following removal of the microtubule-disrupting agent nocodazole. Again, pre-treatment with LPA prevented this alteration. Ethanol-treated rodent fibroblast NIH3T3 cells that constitutively express an activated Rho mutant protein (GTP-bound form) were insensitive to ethanol, as they showed no alteration either in actin stress-fibre organization or in 2-deoxyglucose uptake. We discuss the putative signalling targets by which ethanol could alter the cytoskeleton and hexose uptake and the cytoprotective effect of LPA against ethanol-induced damages. The latter opens the possibility that LPA or a similar non-hydrolysable lipid derivative could be used as a cytoprotective agent against the noxious effects of ethanol.  相似文献   

19.
Human serum more strongly depressed the feeding response of Hydra (ball formation) elicited by S-methylglutathione than plasma. On the basis of the effect of several proteins released by platelets, at least five apparent components of the response (R1-R5) were suggested. Each of the platelet proteins examined specifically depressed a subset of these components. Among the platelet proteins examined, platelet-derived growth factor (PDGF) specifically depressed the R2 response (the concentration at which the depressing effect was 50% of the maximum [ED50] was 0.17 pM), and basic fibroblast growth factor depressed the R3 and R5 responses (ED50 0.50 aM) and the R2 response (ED50 0.55 pM). With respect to the depression of the R2 response by PDGF, addition of an anti-PDGF IgG or chemical reduction of PDGF, both of which prevent PDGF from binding to its cell surface receptor on responsive cells, eliminated the depressing effect of PDGF on the hydra response. The implications of these observations are discussed.  相似文献   

20.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号