首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.  相似文献   

2.
3.
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.  相似文献   

4.
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a 'clean' fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system.  相似文献   

5.
6.
Introduction: Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 – an indicator of microglial activation ? has recently been identified by proteomic studies as a candidate biomarker for Alzheimer’s disease (AD).

Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration – particularly total tau protein ? has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders – including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls – need to be considered.

Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.  相似文献   

7.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

8.
9.
David J. Hirsch 《CMAJ》1985,132(8):913-917
Recent studies suggest that restricting the dietary protein intake of patients with progressive renal disease slows their loss of renal function. Studies in animals have shown that an increase in the filtration rates of individual nephrons (hyper-filtration), an adaptive response to loss of renal mass, appears to induce progressive renal damage and that such damage may be prevented by dietary protein restriction. Preliminary evidence suggests that restriction of protein intake to less than 50 g/d in man has a similar beneficial effect in slowing the progression of chronic renal disease. Dietary therapy appears to be particularly effective for patients with early renal disease, allowing a doubling in the time until dialysis is required in many cases. Although large-scale clinical studies are planned, there is now sufficient evidence to warrant the use of moderate protein restriction (to less than 50 g/d) in most patients suffering from progressive renal disease. Such therapy should only be instituted with expert dietary and nephrologic consultation.  相似文献   

10.
11.
Knowledge whether a certain DNA variant is a pathogenic mutation or a harmless polymorphism is a critical issue in medical genetics, in which results of a molecular analysis may serve as a basis for diagnosis and genetic counseling. Due to its genetic heterogeneity expressed at the levels of loci, genes and mutations, Charcot-Marie-Tooth (CMT) disease can serve as a model group of clinically homogenous diseases for studying the pathogenicity of mutations. Close to a 17p11.2-p12 duplication occurring in 70% of patients with the demyelinating form of CMT disease, numerous mutations have been identified in poorly characterized genes coding for proteins of an unknown function. Functional analyses, segregation analyses of large pedigrees, and inclusion of large control groups are required to assess the potential pathogenicity of CMT mutations. Hence, the pathogenicity of numerous CMT mutations remains unclear. Some variants detected in the CMT genes and originally described as pathogenic mutations have been shown to have a polymorphic character. In contrast, polymorphisms initially considered harmless were later reclassified as pathogenic mutations. However, the process of assessing the pathogenicity of mutations, as presented in this study for CMT disorders, is a more general issue concerning all disorders with a genetic background. Since the number of DNA variants is still growing, in the near future geneticists will increasingly have to cope with the problem of pathogenicity of identified genetic variants.  相似文献   

12.
The species concept in parasites and other pathogens: a pragmatic approach?   总被引:1,自引:0,他引:1  
Although the problem of speciation is a puzzle for evolutionists, species are not mere fantasies. In many cases, it is possible to identify evolutionary entities that deserve to be attributed the name 'species' and that are relevant to medical researchers and decision makers. All approaches to the problem of speciation in pathogens are specific cases of four main concepts (or combinations thereof): biological, phylogenetic, phenetic and phenotypic. Modern genetic concepts and technologies help to juggle these concepts.  相似文献   

13.
In less than a decade, beginning with the demonstration by Floyd, Stadtman, Markesbery et al. of increased reactive carbonyls in the brains of patients with Alzheimer's disease (AD), oxidative damage has been established as a feature of the disease. Here, we review the types of oxidative damage seen in AD, sites involved, possible origin, relationship to lesions, and compensatory changes, and we also consider other neurodegenerative diseases where oxidative stress has been implicated. Although much data remain to be collected, the broad spectrum of changes found in AD are only seen, albeit to a lesser extent, in normal aging with other neurodegenerative diseases showing distinct spectrums of change.  相似文献   

14.
Summary.  Protein misfolding and aberrant polymerization are salient features of virtually all central neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease, triplet repeat disorders, tauopathies, and prion diseases. In many instances, a single amino acid change can predispose to disease by increasing the production and/or changing the biophysical properties of a specific protein. Possible pathogenic similarities among the cerebral proteopathies suggest that therapeutic agents interfering with the proteopathic cascade might be effective against a wide range of diseases. However, testing compounds preclinically will require disease-relevant animal models. Numerous transgenic mouse models of β-amyloidosis, tauopathy, and other aspects of AD have now been produced, but none of the existing models fully recapitulates the pathology of AD. In an attempt to more faithfully replicate the human disease, we infused dilute AD-brain extracts into Tg2576 mice at 3-months of age (i.e. 5–6 months prior to the usual onset of β-amyloid deposition). We found that intracerebral infusion of AD brain extracts results in: 1) Premature deposition of β-amyloid in eight month-old, β-amyloid precursor protein (βAPP)-transgenic mice (Kane et al., 2000); 2) augmented amyloid load in the injected hemisphere of 15 month-old transgenic mice; 3) evidence for the spread of pathology to other brain areas, possibly by neuronal transport mechanisms; and 4) tau hyperphosphorylation (but not neurofibrillary pathology) in axons passing through the injection site. The seeding of β-amyloid in vivo by AD brain extracts suggests pathogenic similarities between β-amyloidoses such as AD and other cerebral proteopathies such as the prionoses, and could provide a new model for studying the proteopathic cascade and its neuronal consequences in neurodegenerative diseases. Received June 28, 2001 Accepted August 6, 2001 Published online June 26, 2002  相似文献   

15.
Macroautophagy (henceforth referred to simply as autophagy) is a bulk degradation process involved in the clearance of long-lived proteins, protein complexes and organelles. A portion of the cytosol, with its contents to be degraded, is enclosed by double-membrane structures called autophagosomes/autophagic vacuoles, which ultimately fuse with lysosomes where their contents are degraded. In this review, we will describe how induction of autophagy is protective against toxic intracytosolic aggregate-prone proteins that cause a range of neurodegenerative diseases. Autophagy is a key clearance pathway involved in the removal of such proteins, including mutant huntingtin (that causes Huntington’s disease), mutant ataxin-3 (that causes spinocerebellar ataxia type 3), forms of tau that cause tauopathies, and forms of alpha-synuclein that cause familial Parkinson’s disease. Induction of autophagy enhances the clearance of both soluble and aggregated forms of such proteins, and protects against toxicity of a range of these mutations in cell and animal models. Interestingly, the aggregates formed by mutant huntingtin sequester and inactivate the mammalian target of rapamycin (mTOR), a key negative regulator of autophagy. This results in induction of autophagy in cells with these aggregates.  相似文献   

16.
17.
18.
Neural tube defects (NTDs), such as spina bifida (SB) or exencephaly, are common congenital malformations leading to infant mortality or severe disability. The etiology of NTDs is multifactorial with a strong genetic component. More than 70 NTD mouse models have been reported, suggesting the involvement of distinct pathogenetic mechanisms, including faulty cell death regulation. In this review, we focus on the contribution of functional genomics in elucidating the role of apoptosis and autophagy genes in neurodevelopment. On the basis of compared phenotypical analysis, here we discuss the relative importance of a tuned control of both apoptosome-mediated cell death and basal autophagy for regulating the correct morphogenesis and cell number in developing central nervous system (CNS). The pharmacological modulation of genes involved in these processes may thus represent a novel strategy for interfering with the occurrence of NTDs.  相似文献   

19.
Alzheimer's disease is the most common progressive neurodegenerative disorder characterized by the abnormal deposition of amyloid plaques, likely as a consequence of an incorrect processing of the amyloid-β precursor protein (AβPP). Dysfunctions in both the ubiquitin–proteasome system and autophagy have also been observed. Recently, an extensive cross-talk between these two degradation pathways has emerged, but the exact implicated processes are yet to be clarified. In this work, we gained insight into such interplay by analyzing human SH-SY5Y neuroblastoma cells stably transfected either with wild-type AβPP gene or 717 valine-to-glycine AβPP-mutated gene. The over-expression of the AβPP mutant isoform correlates with an increase in oxidative stress and a remodeled pattern of protein degradation, with both marked inhibition of proteasome activities and impairment in the autophagic flux. To compensate for this altered scenario, cells try to promote the autophagy activation in a HDAC6-dependent manner. The treatment with amyloid-β42 oligomers further compromises proteasome activity and also contributes to the inhibition of cathepsin-mediated proteolysis, finally favoring the neuronal degeneration and suggesting the existence of an Aβ42 threshold level beyond which proteasome-dependent proteolysis becomes definitely dysfunctional.  相似文献   

20.
In vertebrate somatic cells, the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles, such as plant cells and many oocytes, bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization, both before and after nuclear envelope breakdown (NEB), is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.Key words: centrosome, centriole, mitosis, spindle, cell cycle, meiosis, plant cell, microsurgery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号