首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson''s disease (PD) is an age‐related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, associated with the accumulation of misfolded α‐synuclein and lysosomal impairment, two events deemed interconnected. Protein aggregation is linked to defects in degradation systems such as the autophagy‐lysosomal pathway, while lysosomal dysfunction is partly related to compromised acidification. We have recently proven that acidic nanoparticles (aNPs) can re‐acidify lysosomes and ameliorate neurotoxin‐mediated dopaminergic neurodegeneration in mice. However, no lysosome‐targeted approach has yet been tested in synucleinopathy models in vivo. Here, we show that aNPs increase α‐synuclein degradation through enhancing lysosomal activity in vitro. We further demonstrate in vivo that aNPs protect nigral dopaminergic neurons from cell death, ameliorate α‐synuclein pathology, and restore lysosomal function in mice injected with PD patient‐derived Lewy body extracts carrying toxic α‐synuclein aggregates. Our results support lysosomal re‐acidification as a disease‐modifying strategy for the treatment of PD and other age‐related proteinopathies.  相似文献   

2.
Mitochondrial dysfunction and oxidative stress are implicated in the neurodegenerative process in Parkinson??s disease (PD). Moreover, c-Jun N-terminal kinase (JNK) plays an important role in dopaminergic neuronal death in substantia nigra pars compacta. Tauroursodeoxycholic acid (TUDCA) acts as a mitochondrial stabilizer and anti-apoptotic agent in several models of neurodegenerative diseases. Here, we investigated the role of TUDCA in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in a mouse model of PD. We evaluated whether TUDCA modulates MPTP-induced degeneration of dopaminergic neurons in the nigrostriatal axis, and if that can be explained by regulation of JNK phosphorylation, reactive oxygen species (ROS) production, glutathione S-transferase (GST) catalytic activation, and Akt signaling, using C57BL/6 glutathione S-transferase pi (GSTP) null mice. TUDCA efficiently protected against MPTP-induced dopaminergic degeneration. We have previously demonstrated that exacerbated JNK activation in GSTP null mice resulted in increased susceptibility to MPTP neurotoxicity. Interestingly, pre-treatment with TUDCA prevented MPTP-induced JNK phosphorylation in mouse midbrain and striatum. Moreover, the anti-oxidative role of TUDCA was demonstrated in vivo by impairment of ROS production in the presence of MPTP. Finally, results herein suggest that the survival pathway activated by TUDCA involves Akt signaling, including downstream Bad phosphorylation and NF-??B activation. We conclude that TUDCA is neuroprotective in an in vivo model of PD, acting mainly by modulation of JNK activity and cellular redox thresholds, together with activation of the Akt pro-survival pathway. These results open new perspectives for the pharmacological use of TUDCA, as a modulator of neurodegeneration in PD.  相似文献   

3.
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.

Brain iron deposition is a feature of Parkinson’s disease pathology, but how this contributes to neurodegeneration is unclear. This study show that Parkinson’s disease-linked mutations in LRRK2 cause aberrant brain iron accumulation in vivo and iron dyshomeostasis in vitro, supporting a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.  相似文献   

4.
Structural and functional alterations of alpha-synuclein is a presumed culprit in the demise of dopaminergic neurons in Parkinson's disease (PD). Alpha-synuclein mutations are found in familial but not in sporadic PD, raising the hypothesis that effects similar to those of familial PD-linked alpha-synuclein mutations may be achieved by oxidative post-translational modifications. Here, we show that wild-type alpha-synuclein is a selective target for nitration following peroxynitrite exposure of stably transfected HEK293 cells. Nitration of alpha-synuclein also occurs in the mouse striatum and ventral midbrain following administration of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Conversely, beta-synuclein and synaptophysin were not nitrated in MPTP-intoxicated mice. Our data demonstrate that alpha-synuclein is a target for tyrosine nitration, which, by disrupting its biophysical properties, may be relevant to the putative role of alpha-synuclein in the neurodegeneration associated with MPTP toxicity and with PD.  相似文献   

5.
Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.  相似文献   

6.
Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes.  相似文献   

7.
Mitochondrial dysfunction is the foremost perpetrator of the nigrostriatal dopaminergic neurodegeneration leading to Parkinson's disease (PD). However, the roles played by majority of the mitochondrial proteins in PD pathogenesis have not yet been deciphered. The present study investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and combined maneb and paraquat on the mitochondrial proteome of the nigrostriatal tissues in the presence or absence of minocycline, levodopa and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP). The differentially expressed proteins were identified and proteome profiles were correlated with the pathological and biochemical anomalies induced by MPTP and maneb and paraquat. MPTP altered the expression of twelve while combined maneb and paraquat altered the expression of fourteen proteins. Minocycline, levodopa and MnTMPyP, respectively, restored the expression of three, seven and eight proteins in MPTP and seven, eight and eight proteins in maneb- and paraquat-treated groups. Although levodopa and MnTMPyP rescued from MPTP- and maneb- and paraquat-mediated increase in the microglial activation and decrease in manganese-superoxide dismutase expression and complex I activity, dopamine content and number of dopaminergic neurons, minocycline defended mainly against maneb- and paraquat-mediated alterations. The results demonstrate that MPTP and combined maneb and paraquat induce mitochondrial dysfunction and microglial activation and alter the expression of a bunch of mitochondrial proteins leading to the nigrostriatal dopaminergic neurodegeneration and minocycline, levodopa or MnTMPyP variably offset scores of such changes.  相似文献   

8.
Mutations in the mitochondrial PTEN-induced kinase 1 (Pink1) gene have been linked to Parkinson disease (PD). Recent reports including our own indicated that ectopic Pink1 expression is protective against toxic insult in vitro, suggesting a potential role for endogenous Pink1 in mediating survival. However, the role of endogenous Pink1 in survival, particularly in vivo, is unclear. To address this critical question, we examined whether down-regulation of Pink1 affects dopaminergic neuron loss following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the adult mouse. Two model systems were utilized: virally delivered shRNA-mediated knockdown of Pink1 and germ line-deficient mice. In both instances, loss of Pink1 generated significant sensitivity to damage induced by systemic MPTP treatment. This sensitivity was associated with greater loss of dopaminergic neurons in the Substantia Nigra pars compacta and terminal dopamine fiber density in the striatum region. Importantly, we also show that viral mediated expression of two other recessive PD-linked familial genes, DJ-1 and Parkin, can protect dopaminergic neurons even in the absence of Pink1. This evidence not only provides strong evidence for the role of endogenous Pink1 in neuronal survival, but also supports a role of DJ-1 and Parkin acting parallel or downstream of endogenous Pink1 to mediate survival in a mammalian in vivo context.  相似文献   

9.
Parkinson's disease: mechanisms and models   总被引:54,自引:0,他引:54  
Dauer W  Przedborski S 《Neuron》2003,39(6):889-909
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.  相似文献   

10.
11.
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis.  相似文献   

12.
Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.  相似文献   

13.
Reactive oxygen species (ROS) can induce lysosomal membrane permeabilization (LMP). Photoirradiation of murine hepatoma 1c1c7 cultures preloaded with the photosensitizer NPe6 generates singlet oxygen within acidic organelles and causes LMP and the activation of procaspases. Treatment with the cationic amphiphilic drugs (CADs) U18666A, imipramine, and clozapine stimulated the accumulation of filipin-stainable nonesterified cholesterol/sterols in late endosomes/lysosomes, but not in mitochondria. Concentration-response studies demonstrated an inverse relationship between lysosomal nonesterified cholesterol/sterol contents and susceptibility to NPe6 photoirradiation-induced intracellular membrane oxidation, LMP, and activation of procaspase-9 and -3. Similarly, the kinetics of restoration of NPe6 photoirradiation-induced LMP paralleled the losses of lysosomal cholesterol that occurred upon replating U18666A-treated cultures in CAD-free medium. Consistent with the oxidation of lysosomal cholesterol, filipin staining in U18666A-treated cultures progressively decreased with increasing photoirradiating light dose. U18666A also suppressed the induction of LMP and procaspase activation by exogenously added hydrogen peroxide. However, neither U18666A nor imipramine suppressed the induction of apoptosis by agents that did not directly induce LMP. These studies indicate that lysosomal nonesterified cholesterol/sterol content modulates susceptibility to ROS-induced LMP and possibly does so by being an alternative target for oxidants and lowering the probability of damage to other lysosomal membrane lipids and/or proteins.  相似文献   

14.
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

15.
In the present study, we investigated the anticancer activity of Pinus radiata bark extract (PRE) against MCF-7 human breast cancer cells. First, we observed that PRE induces potent cytotoxic effects in MCF-7 cells. The cell death had features of cytoplasmic vacuolation, plasma membrane permeabilization, chromatin condensation, phosphatidylserine externalization, absence of executioner caspase activation, insensitivity to z-VAD-fmk (caspase inhibitor), increased accumulation of autophagic markers, and lysosomal membrane permeabilization (LMP). Both the inhibition of early stage autophagy flux and lysosomal cathepsins did not improve cell viability. The antioxidant, n-acetylcysteine, and the iron chelator, deferoxamine, failed to restore the lysosomal integrity indicating that PRE-induced LMP is independent of oxidative stress. This was corroborated with the absence of enhanced ROS production in PRE-treated cells. Chelation of both intracellular calcium and zinc promotes PRE-induced LMP. Geranylgeranylacetone, an inducer of Hsp70 expression, also had no significant protective effect on PRE-induced LMP. Moreover, we found that PRE induces endoplasmic reticulum (ER) stress and mitochondrial membrane depolarization in MCF-7 cells. The ER stress inhibitor, 4-PBA, did not restore the mitochondrial membrane integrity, whereas cathepsin inhibitors demonstrated significant protective effects. Collectively, our results suggest that PRE induces an autophagic block, LMP, ER stress, and mitochondrial dysfunction in MCF-7 cells. However, further studies are clearly warranted to explore the exact mechanism behind the anticancer activity of PRE in MCF-7 human breast cancer cells.  相似文献   

16.
Glioblastoma (GBM) is one of the most malignant primary brain tumors and its prognosis is very poor. Lysosome-dependent cell death is mainly caused by lysosomal membrane permeabilization (LMP), a process in which the lysosome loses its membrane integrity and lysosomal contents are released into the cytosol. Lysosomotropic agent, a kind of compound that selectively accumulates in the lysosomes, is one of the most important inducers of LMP. As a newly-synthetic lysosomotropic agent, Lys05 showed efficient autophagy inhibiting and antitumor effect. But its mechanisms are not well illustrated. Here, we studied whether Lys05 has antiglioma activity. We found that Lys05 decreased cell viability and reduced cell growth of glioma U251 and LN229 cells. After Lys05 treatment, autophagic flux is inhibited and lysosome function is impaired. We also found that Lys05 caused LMP and mitochondrial depolarization. Finally, Lys05 increased radiosensitivity in an LMP-dependent manner. For the first time, our findings indicate that LMP contributes to radiosensitivity in GBM cells. Therefore, LMP inducer, Lys05 might be a promising compound in the treatment of GBM cells.  相似文献   

17.
Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.  相似文献   

18.
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H2TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.  相似文献   

19.
《Autophagy》2013,9(9):1389-1391
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

20.
The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号