首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
《Autophagy》2013,9(6):600-603
The IκappaB kinase (IKK)/NF-κappaB signaling pathway plays an essential role in the development and survival of many types of cancers including adult T-cell leukemia (ATL) caused by the human T-cell leukemia virus type I (HTLV-I) infection. Accordingly, targeting NF-κappaB provides an attractive strategy for cancer therapy. We recently found that specific inhibition of Hsp90 by geldanamycin (GA) results in autophagic degradation of IKK and NF-κappaB-inducing kinase (NIK), an upstream kinase of IKK, and inactivation of NF-κappaB in various cell lines. Here, we further report that GA inhibition of Hsp90 also led to IKK autophagic degradation and NF-κappaB inhibition in both HTLV-transformed T cells and ATL-derived cell lines. Importantly, GA treatment led to efficient apoptosis of these malignant cells, whereas inhibition of autophagic degradation of IKK significantly ameliorated the cytotoxic effect of GA. These findings thus not only provide mechanistic insights into the tumor suppression function of autophagy and the anti-tumor activity of GA, but also suggest an immediate therapeutic strategy for ATL and other diseases associated with NF-κappaB activation by targeting autophagic degradation of the central NF-kappaB activating kinases.

Addendum to:

Hsp90 Inhibition Results in Autophagy-Mediated Proteasome-Independent Degradation of IκappaB Kinase (IKK)

G. Qing, P. Yan and G. Xiao

Cell Res 2006; 16:895-901

and

Hsp90 Regulates Processing of NF-κappaB2 p100 Involving Protection of NF-κappaB-Inducing Kinase (NIK) from Autophagy-Mediated Degradation

G. Qing, P. Yan, Z. Qu, H. Liu and G. Xiao

Cell Res 2007; 17:520-30  相似文献   

3.
4.
5.
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) and TRAF5 are adapter proteins involved in TNFα-induced activation of the c-Jun N-terminal kinase and nuclear factor κB (NF-κB) pathways. Currently, TNFα-induced NF-κB activation is believed to be impaired in TRAF2 and TRAF5 double knockout (T2/5 DKO) cells. Here, we report instead that T2/5 DKO cells exhibit high basal IκB kinase (IKK) activity and elevated expression of NF-κB-dependent genes in unstimulated conditions. Although TNFα-induced receptor-interacting protein 1 ubiquitination is indeed impaired in T2/5 DKO cells, TNFα stimulation further increases IKK activity in these cells, resulting in significantly elevated expression of NF-κB target genes to a level higher than that in wild-type cells. Inhibition of NIK in T2/5 DKO cells attenuates basal IKK activity and restores robust TNFα-induced IKK activation to a level comparable with that seen in wild-type cells. This suggests that TNFα can activate IKK in the absence of TRAF2 and TRAF5 expression and receptor-interacting protein 1 ubiquitination. In addition, both the basal and TNFα-induced expression of anti-apoptotic proteins are normal in T2/5 DKO cells, yet these DKO cells remain sensitive to TNFα-induced cell death, due to the impaired recruitment of anti-apoptotic proteins to the TNFR1 complex in the absence of TRAF2. Thus, our data demonstrate that TRAF2 negatively regulates basal IKK activity in resting cells and inhibits TNFα-induced cell death by recruiting anti-apoptotic proteins to the TNFR1 complex rather than by activating the NF-κB pathway.  相似文献   

6.
7.
8.
9.
NF—κB已被证明在肿瘤和炎症过程中起到至关重要的作用。因此,建立抑制NF-κB信号通路的药物筛选模型至关重要。利用荧光素酶报告基因技术与蛋白印迹技术分别探索TNFα处理浓度及时间对NF-κB报告基因表达和NF—κB抑制亚单位It〈Bα降解的影响,进而构建NF—κB信号通路抑制剂药物筛选模型。实验结果表明,0.01nmol/LTNFα作用24h即能刺激HEK293T细胞中NF—κB报告基因较高水平的表达,且其表达量与TNFα的剂量和处理时间呈正相关性;0.01nmol/LTNFα作用5min即能使Panc-28细胞中IκBα明显降解,20min~30min几乎降解完全,之后IκBα含量又开始增加。NF-κB阳性抑制剂藤黄酸验证表明NF-κB萤光素酶报告基因检测筛选体系和NF—κB抑制亚单位降解筛选体系两种体系稳定可行。结果证明,两种模型可以用于NF—κB信号通路抑制剂药物的筛选。  相似文献   

10.
11.
12.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.  相似文献   

13.
14.
15.
《Autophagy》2013,9(6):725-737
Areca (betel) chewing was tightly linked to oral tumorigenesis in Asians. Areca nut was a recently confirmed group I carcinogen and a popular addictive substance used by Asians. While, the pathogenetic impact of areca on oral epithelial cells was still unclear. This study investigated the association between the induction of autophagy by areca nut extract (ANE) and the molecular regulation underlying this induction in oral cancer cells. Oral cancer cells were treated with ANE to insight the signaling changes underlying phenotypic alterations. The NFκB activation and reactive oxygen species (ROS) genesis were induced by ANE and the NF-κB activation could be the basis of the ROS genesis. Furthermore, p38 activation and upregulation of MKP-1 phosphatase occurred following ANE treatment. These effects can be inhibited by ROS blockers. ANE treatment induced autophagy among oral cancer cells, which was characterized by LC3-II accumulation, genesis of autophagosomes and the appearance of EGFP-LC3 puncta. This induction was mediated through the activation of p38, MKP-1 and HIF-1α. Knockdown of ANE-modulated HIF-1α expression reduced autophagy. Blockage of ANE-induced autophagy increased the proportion of oral cancer cells undergoing apoptotic death. This study identified for the first time that ANE modulates a signaling cascade that induces HIF-1α expression in oral cancer cells. The eventual induction of autophagy was beneficial to cell survival from ANE-induced apoptosis.  相似文献   

16.
The present study was conducted to see the role of NF-κB in virulent (Mycobacterium tuberculosis H37Rv) and avirulent (M. tuberculosis H37Ra) mycobacterial infection in THP-1 cells. To inactivate NF-κB, pCMV-IκBαM dn containing THP-1 cell line was generated which showed marked increase in apoptosis with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Infected THP-1-IκBαM dn cells showed decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and enhanced TNF-α production. Increase in apoptosis of infected THP-1-IκBαM dn cells resulted in inhibition of intracellular mycobacterial growth. Differential NF-κB activation potential was observed with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Both the strains activated NF-κB after 4 h in THP-1 cells however after 48 h only M. tuberculosis H37Rv activated NF-κB which lead to up-regulation of bcl-2 family anti-apoptotic member, bfl-1/A1. Our results indicated that NF-κB activation may be a determinant factor for the success of virulent mycobacteria within macrophages.  相似文献   

17.
Selenium (Se) is essential for human health. Despite evidence that Se intake affects inflammatory responses, the mechanisms by which Se and the selenoproteins modulate inflammatory signalling, especially in the gut, are not yet defined. The aim of this work was to assess effects of altered Se supply and knock-down of individual selenoproteins on NF-κB activation in gut epithelial cells. Caco-2 cells were stably transfected with gene constructs expressing luciferase linked either to three upstream NF-κB response elements and a TATA box or only a TATA box. TNFα and flagellin activated NF-κB-dependent luciferase activity and increased IL-8 expression. Se depletion decreased expression of glutathione peroxidase1 (GPX1) and selenoproteins H and W and increased TNFα-stimulated luciferase activity, endogenous IL-8 expression and reactive oxygen species (ROS) production. These effects were not mimicked by independent knock-down of either GPX1, selenoprotein H or W; indeed, GPX1 knock-down lowered TNFα-induced NF-κB activation and did not affect ROS levels. GPX4 knock-down decreased NF-κB activation by flagellin but not by TNFα. We hypothesise that Se depletion alters the pattern of expression of multiple selenoproteins that in turn increases ROS and modulates NF-κB activation in epithelial cells, but that the effect of GPX1 knock-down is ROS-independent.  相似文献   

18.
19.
PTX3, a member of the long pentraxin subfamily, associated with innate immunity is indispensable for resistance to some cancer. Gemcitabine, an analog of cytosine arabinoside, has shown restrained benefits because of profound chemoresistance. The PTX3 expression on GEM in human lung cancer cells have not yet been clarified; the present study aimed to show reactive oxygen species (ROS) mediatory PTX3 expression through distinct mechanisms. Whereas ginsenoside Rg3 is a herbal medicine with strong antitumor activity. Furthermore, we tested the hypothesis; Rg3 abrogates GEM-induced production of ROS-mediated activation of Akt and extracellular signal-regulated kinase (ERK) pathways and inhibits nuclear piling-up of nuclear factor kappa B (NF-κB) and HIF-1α. On the basis of time and dose-dependent manner, our data demonstrated that GEM-induced PTX3 expression was dependent on ROS generation as it was abrogated by pretreatment of lung cancer cells with the free radical scavenger N-acetyl-l -cysteine. Our data demonstrated that PTX3 upregulation by GEM correlated with the time-dependent escalation of NF-κB and HIF-1α in the nucleus resulted from phosphorylation-induced degradation of IκBα, whereas HIF-1α upregulation was NF-κB-dependent. Increase in ROS expression in lung cancer cells on GEM treatment preceded the nuclear accumulation of NF-κB and HIF-1α and suppression of ROS diminished these effects. ERK1/2 and Akt activation mediated the effect of ROS on NF-κB and HIF-1α and their pharmacological inhibition suppressed GEM-induced PTX3. Our study findings reinforced the role regarding PTX3 signaling in GEM-induced resistance and pointed toward an unintended and undesired effect of chemotherapy and to get an active regimen; the synergy was associated with NF-κB downregulation in lung cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号