首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonresolving inflammation in the intestine predisposes individuals to the development of colitis-associated cancer (CAC). Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and CAC. However, few agents have been reported to reduce CAC by targeting inflammasomes. Here we show that the small molecule andrographolide (Andro) protects mice against azoxymethane/dextran sulfate sodium-induced colon carcinogenesis through inhibiting the NLRP3 inflammasome. Administration of Andro significantly attenuated colitis progression and tumor burden. Andro also inhibited NLRP3 inflammasome activation in macrophages both in vivo and in vitro, as indicated by reduced expression of cleaved CASP1, disruption of NLRP3-PYCARD-CASP1 complex assembly, and lower IL1B secretion. Importantly, Andro was found to trigger mitophagy in macrophages, leading to a reversed mitochondrial membrane potential collapse, which in turn inactivated the NLRP3 inflammasome. Moreover, downregulation of the PIK3CA-AKT1-MTOR-RPS6KB1 pathway accounted for Andro-induced autophagy. Finally, Andro-driven inhibition of the NLRP3 inflammasome and amelioration of murine models for colitis and CAC were significantly blocked by BECN1 knockdown, or by various autophagy inhibitors. Taken together, our findings demonstrate that mitophagy-mediated NLRP3 inflammasome inhibition by Andro is responsible for the prevention of CAC. Our data may help guide decisions regarding the use of Andro in patients with inflammatory bowel diseases, which ultimately reduces the risk of CAC.  相似文献   

2.
Infl ammasome is a large protein complex activated upon cellular stress or microbial infection, which triggers maturation of pro-inflammatory cytokines interleukin-1β and interleukin-18 through caspase-1 activation. Nod-like receptor family protein 3 (NLRP3) is the most characterized infl ammasome activated by various stimuli. However, the mechanism of its activation is unclear and its exact cellular localization is still unknown. We examined the potential co-localization of NLRP3 infl ammasome with mitochondria and seven other organelles under adenosine triphosphate, nigericin or monosodium urate stimulation in mouse peritoneal macrophages using confocal microscopy approach. Our results revealed that the activated endogenous apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome forms in the cytoplasm and co-localizes with NLRP3 and caspase-1, but not with any of the organelles screened. This study indicates that the ASC pyroptosome universally localizes within the cytoplasm rather than with any specifi c organelles.  相似文献   

3.
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identifi ed to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.  相似文献   

4.
A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co‐deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase‐8, a caspase essential for death‐receptor‐mediated apoptosis, is required for efficient Toll‐like‐receptor‐induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non‐apoptotic role for caspase‐8 in regulating inflammasome activation and pro‐inflammatory cytokine levels.  相似文献   

5.
6.
Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway.  相似文献   

7.
8.
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.  相似文献   

9.
Uncontrolled endoplasmic reticulum (ER) stress responses are proposed to contribute to the pathology of chronic inflammatory diseases such as type 2 diabetes or atherosclerosis. However, the connection between ER stress and inflammation remains largely unexplored. Here, we show that ER stress causes activation of the NLRP3 inflammasome, with subsequent release of the pro-inflammatory cytokine interleukin-1β. This ER-triggered proinflammatory signal shares the same requirement for reactive oxygen species production and potassium efflux compared with other known NLRP3 inflammasome activators, but is independent of the classical unfolded protein response (UPR). We thus propose that the NLRP3 inflammasome senses and responds to ER stress downstream of a previously uncharacterized ER stress response signaling pathway distinct from the UPR, thus providing mechanistic insight to the link between ER stress and chronic inflammatory diseases.  相似文献   

10.
Silicosis is an incurable and progressive lung disease characterized by chronic inflammation and fibroblasts accumulation. Studies have indicated a vital role for epithelial-mesenchymal transition (EMT) in fibroblasts accumulation. NLRP3 inflammasome is a critical mediator of inflammation in response to a wide range of stimuli (including silica particles), and plays an important role in many respiratory diseases. However, whether NLRP3 inflammasome regulates silica-induced EMT remains unknown. Our results showed that silica induced EMT in human bronchial epithelial cells (16HBE cells) in a dose- and time-dependent manner. Meanwhile, silica persistently activated NLRP3 inflammasome as indicated by continuously elevated extracellular levels of interleukin-1β (IL-1β) and IL-18. NLRP3 inflammasome inhibition by short hairpin RNA (shRNA)-mediated knockdown of NLRP3, selective inhibitor MCC950, and caspase-1 inhibitor Z-YVAD-FMK attenuated silica-induced EMT. Western blot analysis indicated that TAK1-MAPK-Snail/NF-κB pathway involved NLRP3 inflammasome-mediated EMT. Moreover, pirfenidone, a commercially and clinically available drug approved for treating idiopathic pulmonary fibrosis (IPF), effectively suppressed silica-induced EMT of 16HBE cells in line with NLRP3 inflammasome inhibition. Collectively, our results indicate that NLRP3 inflammasome is a promising target for blocking or retarding EMT-mediated fibrosis in pulmonary silicosis. On basis of this mechanism, pirfenidone might be a potential drug for the treatment of silicosis.  相似文献   

11.
  相似文献   

12.
Pannexin-1 (Panx1) forms nonselective large channel in cell plasma membrane and has been shown to be associated with NLRP3 inflammasome activation, ATP release and phagocytes recruitment. In the current study, by manipulation of Panx1 expression in human myeloid cells and application of Panx1 defi cient mice, we failed to fi nd a correlation between Panx1 and NLRP3 inflammasome activation, although an interaction between these two proteins was evident. However, in thioglycollate induced peritonitis, Panx1 defi cient mice showed much more phagocytes infiltration. Further analyses showed that mice defi cient for Panx1 exhibited enlarged F4/80lowGr1-Ly6C-cell population in the peritonea. Our study thus reveals an important role for Panx1 in regulation of peritoneal cell population and peritonitis development.  相似文献   

13.
目的 检测中药薯蓣皂苷是否可以抑制粪肠球菌脂磷壁酸(LTA)所诱导的NLRP3炎性体的活化。方法 选用中药薯蓣皂苷作为实验药物,作用于小鼠巨噬细胞RAW264.7,NLRP3炎性体相关因子mRNA的表达用Real-time qPCR方法检测。通过免疫荧光染色检测薯蓣皂苷对NF-κB的表达情况,流式细胞仪检测其对ROS的表达情况。结果 Real-time qPCR试验显示,中药薯蓣皂苷在LTA存在下,可以明显降低NLRP3、Caspase-1及IL-1β的mRNA表达。免疫荧光染色及流式细胞仪的检测证实,其对NLRP3的抑制主要是通过抑制NF-κB的活化及ROS的释放而实现。结论 薯蓣皂苷可有效抑制NLRP3炎性体的表达,其机制是通过抑制NF-κB信号通路及ROS的释放而实现。薯蓣皂苷可以作为临床难治性牙髓根尖周病治疗的候选药物。  相似文献   

14.
Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1β), and IL-1β p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.  相似文献   

15.
Acute liver failure (ALF) is a rare disease characterized by the sudden onset of serious hepatic injury, as manifested by a profound liver dysfunction and hepatic encephalopathy in patients without prior liver disease. In this paper, we aim to investigate whether verapamil, an antagonist of TXNIP, inhibits early ALF through suppressing the NLRP3 inflammasome pathway. Firstly, an ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. The optimal concentration of verapamil in treating early ALF mice was determined followed by investigation on its mechanism in LPS/GalN-induced liver injury. Western blot analysis and co-immunoprecipitation were performed to determine the activation of the TXNIP/NLRP3 inflammasome pathway. Subsequently, overexpression of NLRP3 in mouse liver was induced by transfection with AAV-NRLP3 in vivo and in vitro to identity whether verapamil inhibited early ALF through suppressing the activation of NLRP3 inflammasome. We found that ALF was induced by LPS/GalN in mice but was alleviated by verapamil through a mechanism that correlated with suppression of the NLRP3 inflammasome pathway. Oxidative stress and inflammatory response were induced by intraperitoneal injection of LPS/GalN, but alleviated with injection of verapamil. Overexpression of NLRP3 via AAV in mouse liver in vivo and in vitro reduced the therapeutic effect of verapamil on LPS/GalN-induced ALF. Taken together, the TXNIP antagonist verapamil could inhibit activation of the NLRP3 inflammasome, inflammatory responses and oxidative stress to alleviate LPS/GalN-induced ALF.  相似文献   

16.
The fungus Trichophyton schoenleinii (T. schoenleinii) is the causative agent of Trichophytosis and Tinea favosa of the scalp in certain regions of Eurasia and Africa. Human innate immune system plays an important role in combating with various pathogens including fungi. The inflammasome is one of the most critical arms of host innate immunity, which is a protein complex controlling maturation of IL-1β. To clarify whether T. schoenleinii is able to activate the inflammasome, we analyzed human monocytic cell line THP-1 for IL-1β production upon infection with T. schoenleinii strain isolated from Tinea favosa patients, and rapid IL-1β secretion from THP-1 cells was observed. Moreover, applying competitive inhibitors and gene specific silencing with shRNA, we found that T. schoenleinii induced IL-1β secretion, ASC pyroptosome formation as well as caspase-1 activation were all dependent on NLRP3. Cathepsin B activity, ROS production and K+ efflux were required for the inflammasome activation by T. schoenleinii. Our data thus reveal that the NLRP3 inflammasome plays an important role in host defense against T. schoenleinii, and suggest that manipulating NLRP3 signaling can be a novel approach for control of diseases caused by T. schoenleinii infection.  相似文献   

17.
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.  相似文献   

18.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

19.
Spinal cord injury (SCI) is one kind of severe traumatic injury, resulting in systemic inflammatory response syndrome and secondary lung injury, which is an important pathological basis of respiratory complications. The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome is an important cytosolic protein complex in many inflammatory diseases. Hence, it is inescapable to explore the effect of inhibition of NLRP3 inflammasome by inhibitors in a mouse SCI model, which was conducted by using the method of 30-G closing force aneurysm clipping at T6–T7 spinal segment for 1 min, followed by assessment of edema, histology, alveolar type II cell apoptosis, mitochondrial dysfunction, and neutrophil infiltration. In brief, our results showed that, NLRP3 inflammasome inhibitor BAY 11-7082 or A438079 inhibited activation of NLRP3 inflammasome, alleviated mitochondrial dysfunction, the number of macrophage and neutrophil, thereby attenuating alveolar type II cell apoptosis, lung edema, and histological injury. Taken together, our data reveal that NLRP3 inflammasome inhibitor BAY 11-7082 or A438079 attenuates the inflammatory response, reverses mitochondrial dysfunction, and subsequently alleviates secondary lung injury following SCI.  相似文献   

20.
To observe the changes in NLR family pyrin domain containing 3 (NLRP3) inflammasome in a rat model of diabetes-induced lung injury, and investigate the effect of low-dose ethanol on the production of NLRP3 inflammasome. The type I diabetic mellitus (DM) rat model was established, and the rats were divided into four groups: normal control group (CON group), low-dose ethanol group (EtOH group), diabetes group (DM group) and DM+EtOH group. The rats were fed for 6 and 12 weeks, respectively. The ratio of lung wet weight/body weight (lung/body coefficient) was calculated, and the changes of pulmonary morphology and fibrosis were observed by HE and Masson staining. The changes in pulmonary ultra-structure were examined by electron microscopy. The expressions of mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) and NLRP3 inflammasome key factors, NLRP3, ASC and caspase-1 proteins were detected by western blot. Compared with the CON group, the lung/body coefficient was increased (P<0.05), lung fibrosis occurred, ALDH2 protein expression was decreased, and NLRP3, ASC and caspase-1 protein expressions were increased in the DM rats (P<0.05). Compared with the DM group, the lung/body coefficient and fibrosis degree were decreased, ALDH2 protein expression was increased (P<0.05), and NLRP3, ASC and caspase-1 protein expressions were decreased in the DM+EtOH group (P<0.05). Hence, low-dose ethanol increased ALDH2 protein expression and alleviated diabetes-induced lung injury by inhibiting the production of NLRP3 inflammasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号