首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Atkin T  Kittler J 《Autophagy》2012,8(5):851-852
Disrupted in Schizophrenia 1 (DISC1) is a key susceptibility gene for major psychiatric disorders. DISC1 plays a role in key neuronal processes such as neuronal proliferation, migration, integration and function via DISC1's roles at the centrosome and synapse, and in the regulation of intracellular signaling pathways. Recently, the idea of protein aggregation as a disease mechanism for DISC1 has been suggested. In our recent paper we explore these DISC1 protein aggregates in cell lines and neurons and find they are recruited to the aggresome and cause disruption of DISC1 function in intracellular transport.  相似文献   

2.
Disrupted-in Schizophrenia 1 (DISC1), a susceptibility gene for major mental disorders, encodes a scaffold protein that has a multifaceted impact on neuronal development. How DISC1 regulates different aspects of neuronal development is not well understood. Here, we show that Fasciculation and Elongation Protein Zeta-1 (FEZ1) interacts with DISC1 to synergistically regulate dendritic growth of newborn neurons in the adult mouse hippocampus, and that this pathway complements a parallel DISC1-NDEL1 interaction that regulates cell positioning and morphogenesis of newborn neurons. Furthermore, genetic association analysis of two independent cohorts of schizophrenia patients and healthy controls reveals an epistatic interaction between FEZ1 and DISC1, but not between FEZ1 and NDEL1, for risk of schizophrenia. Our findings support a model in which DISC1 regulates distinct aspects of neuronal development through its interaction with different intracellular partners and such epistasis may contribute to increased risk for schizophrenia.  相似文献   

3.
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.  相似文献   

4.
DISC1 at 10: connecting psychiatric genetics and neuroscience   总被引:1,自引:0,他引:1  
Psychiatric genetics research, as exemplified by the DISC1 gene, aspires to inform on mental health etiology and to suggest improved strategies for intervention. DISC1 was discovered in 2000 through the molecular cloning of a chromosomal translocation that segregated with a spectrum of major mental illnesses in a single large Scottish family. Through in vitro experiments and mouse models, DISC1 has been firmly established as a genetic risk factor for a spectrum of psychiatric illness. As a consequence of its protein scaffold function, the DISC1 protein impacts on many aspects of brain function, including neurosignaling and neurodevelopment. DISC1 is a pathfinder for understanding psychopathology, brain development, signaling and circuitry. Although much remains to be learnt and understood, potential targets for drug development are starting to emerge, and in this review, we will discuss the 10 years of research that has helped us understand key roles of DISC1 in psychiatric disease.  相似文献   

5.
Duan X  Chang JH  Ge S  Faulkner RL  Kim JY  Kitabatake Y  Liu XB  Yang CH  Jordan JD  Ma DK  Liu CY  Ganesan S  Cheng HJ  Ming GL  Lu B  Song H 《Cell》2007,130(6):1146-1158
Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, downregulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mispositioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner NDEL1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis.  相似文献   

6.
We re-annotated the interacting partners of the neuronal scaffold protein DISC1 using a knowledge-based approach that incorporated recent protein interaction data and published literature to. This revealed two highly connected networks. These networks feature cellular function and maintenance, and cell signaling. Of potentially greatest interest was the novel finding of a high degree of connectivity between the DISC1 scaffold protein, linked to psychiatric illness, and huntingtin, the protein which is mutated in Huntington's disease. The potential link between DISC1, huntingtin and their interacting partners may open new areas of research into the effects of pathway dysregulation in severe neurological disorders.  相似文献   

7.
Carsten Korth 《朊病毒》2012,6(2):134-141
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.  相似文献   

8.
DISC1 (Disrupted in schizophrenia-1) plays essential roles in neuronal proliferation, neuronal migration and axon guidance and has been implicated in schizophrenia and related psychiatric disorders. DISC1 forms a functional complex with nuclear distribution element-like protein-1 (NDEL1), a key component that regulates microtubule organization during cell division and neuronal migration. DISC1 polymorphisms at the binding interface of DISC1-NDEL1 complex have been implicated in schizophrenia. However, it is unknown how schizophrenia risk polymorphisms perturb its interaction with NDEL1 and how they change the inherent biochemical properties of DISC1. Here, we characterize the oligomerization and binding property of DISC1 and its natural schizophrenia risk variant, S704C. Our results show that DISC1 forms octamers via dimers as building blocks and directly interacts with tetramers of NDEL1. The schizophrenia risk variant S704C affects the formation of octamers of DISC1 and exhibits higher-order self-oligomerization. However, the observed formation of new oligomeric species did not influence its binding with NDEL1. These results suggest that the improper oligomeric assembly of DISC1-S704C may underlie the observed phenotypic variation due to the polymorphism.  相似文献   

9.
《朊病毒》2013,7(2):134-141
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.  相似文献   

10.
Centrosomes play a crucial role in the directed migration of developing neurons. However, the underlying mechanism is poorly understood. This study has identified a novel disrupted in schizophrenia 1 (DISC1)-interacting protein, named CAMDI after coiled-coil protein associated with myosin II and DISC1, which translocates to the centrosome in a DISC1-dependent manner. Knockdown of CAMDI by shRNA revealed severely impaired radial migration with disoriented centrosomes. A yeast two-hybrid screen identified myosin II as a binding protein of CAMDI. CAMDI interacts preferentially with phosphomyosin II and induces an accumulation of phosphomyosin II at the centrosome in a DISC1-dependent manner. Interestingly, one single nucleotide polymorphism of the CAMDI gene (R828W) is identified, and its gene product was found to reduce the binding ability to phosphomyosin II. Furthermore, mice with overexpression of R828W in neurons exhibit an impaired radial migration. Our findings indicate that CAMDI is required for radial migration probably through DISC1 and myosin II-mediated centrosome positioning during neuronal development.  相似文献   

11.
In recent years, Disrupted-In-Schizophrenia 1 (DISC1) has emerged as one of the most promising candidate genes whose disruption confers an increased risk for schizophrenia. Cell biology studies have implicated DISC1 in key neurodevelopmental processes including neurite outgrowth and neuronal migration. In situ hybridization analysis has revealed that Disc1 is expressed in the hypothalamus, olfactory bulbs, the developing cerebral cortex and the hippocampus. The hippocampus is of particular interest because abnormalities in hippocampal volume and function have been consistently reported in schizophrenics. Moreover, DISC1 mutations have been associated with abnormal activation of the hippocampus in humans. Given the involvement of the hippocampus in the pathophysiology of schizophrenia, there is an intriguing possibility that disruption of DISC1 may increase schizophrenia susceptibility by altering the normal development and function of the hippocampus. In order to contribute to our understanding of DISC1's role in the hippocampus, we have performed a detailed analysis of the Disc1 expression pattern in the mouse hippocampus throughout development. We report that Disc1 is expressed throughout the hippocampus during embryonic development, with expression becoming increasingly specialized in Ammon's horn and dentate gyrus granule cells within the first postnatal week. This expression pattern remains consistent into adulthood, with a noted decrease in Disc1 expression in the adult CA1. Disc1 is also expressed in proliferating cells in the adult subgranular zone, as well as in a subset of GABAergic interneurons. Our results are the first report of a detailed immunohistochemical analysis of the ontogeny of Disc1 expression within the hippocampus.  相似文献   

12.
Disrupted-in-Schizophrenia 1 (DISC1) is a promising genetic risk factor for major mental disorders. Many groups repeatedly reported a role for DISC1 in brain development in various strains of mice and rats by using RNA interference (RNAi) approach. Nonetheless, due to the complexity of its molecular disposition, such as many splice variants and a spontaneous deletion in a coding exon of the DISC1 gene in some mouse strains, there have been debates on the interpretation on these published data. Thus, in this study, we address this question by DISC1 knockdown via short-hairpin RNAs (shRNAs) against several distinct target sequences with more than one delivery methodologies into several mouse strains, including C57BL/6, ICR, and 129X1/SvJ. Here, we show that DISC1 knockdown by in utero electroporation of shRNA against exons 2, 6, and 10 consistently results in neuronal migration defects in the developing cerebral cortex, which are successfully rescued by co-expression of full-length DISC1. Furthermore, lentivirus-mediated shRNA also led to migration defects, which is consistent with two other methodologies already published, such as plasmid-mediated and retrovirus-mediated ones. The previous study by Song’s group also reported that, in the adult hippocampus, the phenotype elicited by DISC1 knockdown with shRNA targeting exon 2 was consistently seen in both C57BL/6 and 129S6 mice. Taken together, we propose that some of DISC1 isoforms that are feasible to be knocked down by shRNAs to exon 2, 6, and 10 of the DISC1 gene play a key role for neuronal migration commonly in various mouse strains and rats.  相似文献   

13.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   

14.
DISC1 localizes to the centrosome by binding to kendrin   总被引:1,自引:0,他引:1  
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation that segregated with major mental disorders in a Scottish family. Using the yeast two-hybrid system, we screened a human brain cDNA library for interactors of the DISC1 protein. One of the positive clones encoded kendrin/pericentrin-B, a giant protein known to localize specifically to the centrosome. The interaction between DISC1 and kendrin in mammalian cells was demonstrated by an immunoprecipitation assay. Residues 446-533 of DISC1 were essential for the interaction with kendrin. Immunocytochemical analysis revealed the colocalization of DISC1 and kendrin to the centrosome. These data indicate that DISC1 localizes to the centrosome by binding to kendrin. Kendrin has been reported to anchor the gamma-tubulin complex to the centrosome, providing microtubule nucleation sites. The present study suggests the possible involvement of DISC1 in the pathophysiology of mental disorders due to its putative effect on centrosomal function.  相似文献   

15.
Variation in Disrupted-in-Schizophrenia 1 (DISC1) increases the risk for neurodegenerative diseases, schizophrenia, and other mental disorders. However, the functions of DISC1 associated with the development of these diseases remain unclear. DISC1 has been reported to inhibit Akt/mTORC1 signaling, a major regulator of translation, and recent studies indicate that DISC1 could exert a direct role in translational regulation. Here, we present evidence of a novel role of DISC1 in the maintenance of protein synthesis during oxidative stress. In order to investigate DISC1 function independently of Akt/mTORC1, we used Tsc2−/− cells, where mTORC1 activation is independent of Akt. DISC1 knockdown enhanced inhibition of protein synthesis in cells treated with sodium arsenite (SA), an oxidative agent used for studying stress granules (SGs) dynamics and translational control. N-acetyl-cysteine inhibited the effect of DISC1, suggesting that DISC1 affects translation in response to oxidative stress. DISC1 decreased SGs number in SA-treated cells, but resided outside SGs and maintained protein synthesis independently of a proper SG nucleation. DISC1-dependent stimulation of translation in SA-treated cells was supported by its interaction with eIF3h, a component of the canonical translation initiation machinery. Consistent with a role in the homeostatic maintenance of translation, DISC1 knockdown or overexpression decreased cell viability after SA exposure. Our data suggest that DISC1 is a relevant component of the cellular response to stress, maintaining certain levels of translation and preserving cell integrity. This novel function of DISC1 might be involved in its association with pathologies affecting tissues frequently exposed to oxidative stress.  相似文献   

16.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   

17.
Schizophrenia and bipolar affective disorder are common, debilitating, and poorly understood and treated disorders. Both conditions are highly heritable. Recent genetic studies have suggested that the gene disrupted in schizophrenia 1 (DISC1) is an important risk factor. DISC1 seems to have a key role in building the brain and memories by interacting with other proteins, including nuclear distribution E-like protein and phosphodiesterase 4B. Here, we review the current knowledge, highlight some key unanswered questions and propose ways forward towards a better understanding of normal and abnormal brain development and function. In the long term, this might lead to the discovery of drugs that are more efficacious and safer than currently available ones.  相似文献   

18.
The centrosome is crucial for neuronal migration and polarisation, processes that are disrupted in a number of neurodevelopmental disorders including schizophrenia. Mutation of DISC1, associated with increased risk of schizophrenia and psychiatric illness, has been shown to affect the centrosome, but the mechanisms involved have not been elucidated. In this issue of EMBO Reports, Fukuda and colleagues demonstrate that a DISC1‐interacting protein, CAMDI, suppresses the activity of the histone deacetylase HDAC6, thereby promoting centrosome stability and consequently neuronal migration 1 . Loss of CAMDI leads to cortical migration defects and behavioural phenotypes that model autism spectrum disorders and which can be rescued by inhibition of HDAC6. The study provides novel mechanistic insight into centrosome regulation in neurodevelopment.  相似文献   

19.
Dysbindin and DISC1 are schizophrenia susceptibility factors playing roles in neuronal development. Here we show that the physical interaction between dysbindin and DISC1 is critical for the stability of dysbindin and for the process of neurite outgrowth. We found that DISC1 forms a complex with dysbindin and increases its stability in association with a reduction in ubiquitylation. Furthermore, knockdown of DISC1 or expression of a deletion mutant, DISC1 lacking amino acid residues 403–504 of DISC1 (DISC1Δ403–504), effectively decreased levels of endogenous dysbindin. Finally, the neurite outgrowth defect induced by knockdown of DISC1 was partially reversed by coexpression of dysbindin. Taken together, these results indicate that dysbindin and DISC1 form a physiologically functional complex that is essential for normal neurite outgrowth.  相似文献   

20.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation segregating with schizophrenia, bipolar disorder and other major mental illnesses in a Scottish family. We previously identified 446-533 amino acids of DISC1 as the kendrin-binding region by means of a directed yeast two-hybrid interaction assay and showed that the DISC1-kendrin interaction is indispensable for the centrosomal localization of DISC1. In this study, to confirm the DISC1-kendrin interaction, we examined the interaction between deletion mutants of DISC1 and kendrin. Then, we demonstrated that the carboxy-terminus of DISC1 is indispensable for the interaction with kendrin. Furthermore, the immunocytochemistry revealed that the carboxy-terminus of DISC1 is also required for the centrosomal targeting of DISC1. Overexpression of the DISC1-binding region of kendrin or the DISC1 deletion mutant lacking the kendrin-binding region impairs the microtubule organization. These findings suggest that the DISC1-kendrin interaction plays a key role in the microtubule dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号