首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Embryonic developmental stages and regulations have always been one of the most intriguing aspects of science. Since the cancer stem cell discovery, striking for cancer development and recurrence, embryonic stem cells and control mechanisms, as well as cancer cells and cancer stem cell control mechanisms become important research materials. It is necessary to reveal the similarities and differences between somatic and cancer cells which are formed of embryonic stem cells divisions and determinations. For this purpose, mouse embryonic stem cells (mESCs), mouse skin fibroblast cells (MSFs) and mouse lung squamous cancer cells (SqLCCs) were grown in vitro and the differences between these three cell lines signalling regulations of mechanistic target of rapamycin (mTOR) and autophagic pathways were demonstrated by immunofluorescence and real-time polymerase chain reaction. Expressional differences were clearly shown between embryonic, cancer and somatic cells that mESCs displayed higher expressional level of Atg10, Hdac1 and Cln3 which are related with autophagic regulation and Hsp4, Prkca, Rhoa and ribosomal S6 genes related with mTOR activity. LC3 and mTOR protein levels were lower in mESCs than MSFs. Thus, the mechanisms of embryonic stem cell regulation results in the formation of somatic tissues whereas that these cells may be the causative agents of cancer in any deterioration.  相似文献   

2.
Autophagy is an evolutionarily conserved process that degrades and recycles defective organelles, toxic proteins, and various other aggregates on the cytoplasmic surface by sequestering them into autophagosomes which, then, fuse with lysosomes which degrade them. If these aggregates are not cleared, they accumulate and damage the cell resulting in cellular senescence and aging. Stem cells, with their capacity to differentiate, are crucial for tissue homeostasis. In addition to differentiation, the stemness of stem cells must be preserved. Recent studies in stem cells show the importance of autophagy in evading cellular senescence. In this review, we describe the conservative nature of the autophagy process, carried out throughout evolution. In particular, we highlight the role of autophagy in various evolutionarily diverse species and how it evolved to maintain tissue homeostasis and regulate aging and cellular senescence in stem cells.  相似文献   

3.
4.
人胚胎干细胞的研究   总被引:13,自引:2,他引:13  
来自着床前的囊胚和早期人胚胎的人胚胎干细胞是未分化的多能干细胞,具有无限增殖和分化的潜力,这种特性使之在基础研究和移植治疗中具有广泛的应用。尤其是胚胎干细胞可以产生任何类型的可供临床使用的细胞、组织和器官的潜力,将会带来一场医学革命。  相似文献   

5.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

6.
Stem cells were characterized by their stemness: self-renewal and pluripotency. Mesenchymal stem cells (MSCs) are a unique type of adult stem cells that have been proven to be involved in tissue repair, immunoloregulation and tumorigenesis. Irradiation is a well-known factor that leads to functional obstacle in stem cells. However, the mechanism of stemness maintenance in human MSCs exposed to irradiation remains unknown. We demonstrated that irradiation could induce reactive oxygen species (ROS) accumulation that resulted in DNA damage and stemness injury in MSCs. Autophagy induced by starvation or rapamycin can reduce ROS accumulation-associated DNA damage and maintain stemness in MSCs. Further, inhibition of autophagy leads to augment of ROS accumulation and DNA damage, which results in the loss of stemness in MSCs. Our results indicate that autophagy may have an important role in protecting stemness of MSCs from irradiation injury.  相似文献   

7.
胚胎干细胞   总被引:4,自引:0,他引:4  
李凌松  王莉 《生命科学》2006,18(4):318-322
胚胎干细胞具有自我复制并分化为人体各种功能细胞的潜能。胚胎干细胞具有的独特生物学特性使其被广泛应用于生物学研究的各个领域,特别是发育学。同时,它潜在的医学应用也成为世界范围内的研究热点。但是,由于人胚胎干细胞的来源为植入前的早期胚胎,人胚胎干细胞自诞生之日起便倍受争议。本文将从胚胎干细胞的来源、特性、鉴定标准、增殖机理、应用前景以及研究本身涉及的伦理学争论给予概述。  相似文献   

8.
Liver fibrosis (LF) is the result of a vicious cycle between inflammation-induced chronic hepatocyte injury and persistent activation of hepatic stellate cells (HSCs). Mesenchymal stem cell (MSC)-based therapy may represent a potential remedy for treatment of LF. However, the fate of transplanted MSCs in LF remains largely unknown. In the present study, the fate and antifibrotic effect of MSCs were explored in a LF model induced by CCl4 in mouse. Additionally, MSCs were stimulated in vitro with LF-associated factors, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β1 (TGF-β1), to mimic the LF microenvironment. We unveiled that MSCs exhibited autophagy in response to the LF microenvironment through Becn1 upregulation both in vivo and in vitro. However, autophagy suppression induced by Becn1 knockdown in MSCs resulted in enhanced antifibrotic effects on LF. The improved antifibrotic potential of MSCs may be attributable to their inhibitory effects on T lymphocyte infiltration, HSCs proliferation, as well as production of TNF-α, IFN-γ, and TGF-β1, which may be partially mediated by elevated paracrine secretion of PTGS2/PGE2. Thus, autophagy manipulation in MSCs may be a novel strategy to promote their antifibrotic efficacy.  相似文献   

9.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

10.
11.
干细胞概述   总被引:7,自引:0,他引:7  
林戈  卢光琇 《生命科学》2006,18(4):313-317
干细胞是存在于胚胎和成体中的一类特殊细胞,它能长期地自我更新,在特定的条件下具有分化形成多种终末细胞的能力,不同来源的干细胞分化潜能各异。从早期胚胎内细胞团分离的胚胎干细胞能分化形成个体所有的细胞类型,并具有在体外无限增殖的能力,是最具有临床应用前景和研究价值的干细胞之一。在成体各种组织和器官中也存在成体干细胞,用于维持机体结构和功能的稳态。近期有关成体干细胞可塑性的研究和成体组织中多能干细胞存在的证据扩大了人们对成体干细胞分化潜能的认识。干细胞具有的多向分化潜能和自我更新能力使其成为未来再生医学的重要种子细胞,并成为研究人类早期胚层特化和器官形成、药物筛选以及基因治疗的最佳工具。  相似文献   

12.
Gene delivery to embryonic stem cells   总被引:1,自引:0,他引:1  
Since the establishment of embryonic stem (ES) cells and the identification of tissue-specific stem cells, researchers have made great strides in the analysis of the natural biology of such stem cells for the development of therapeutic applications. Specifically, ES cells are capable of differentiating into all of the cell types that constitute the whole body. Thus, ES cell research promises new type of treatments and possible cures for a variety of debilitating diseases and injuries. The potential medical benefits obtained from stem cell technology are compelling and stem cell research sees a bright future. Control of the growth and differentiation of stem cells is a critical tool in the fields of regenerative medicine, tissue engineering, drug discovery, and toxicity testing. Toward such a goal, we present here an overview of gene delivery in ES cells, covering the following topics: significance of gene delivery in ES cells, stable versus transient gene delivery, cytotoxicity, suspension versus adherent cells, expertise, time, cost, viral vectors for gene transduction (lentiviruses, adenoviruses, and adeno-associated viruses, chemical methods for gene delivery, and mechanical or physical gene delivery methods (electroporation, nucleofection, microinjection, and nuclear transfer).  相似文献   

13.
Aging is responsible for changes in mammalian tissues that result in an imbalance to tissue homeostasis and a decline in the regeneration capacity of organs due to stem cell exhaustion. Autophagy is a constitutive pathway necessary to degrade damaged organelles and protein aggregates. Autophagy is one of the hallmarks of aging, which involves a decline in the number and functionality of stem cells. Recent studies show that stem cells require autophagy to get rid of cellular waste produced during the quiescent stage. In particular, two independent studies in muscle and hematopoietic stem cells demonstrate the relevance of the autophagy impairment for stem cell exhaustion and aging. In this review, we summarize the main results of these works, which helped to elucidate the impact of autophagy in stem cell activity as well as in age‐associated diseases.  相似文献   

14.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

15.
In hybrid cells, not only are the nuclear genomes of parent cells fused, but their cytoplasm is as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm that allows us to gain insight into the organization of hybrid-cell cytoplasm. We analyzed the parental mtDNA in hybrid cells resulting from the fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of parental mtDNA in hybrid cells was based on polymorphism among parental mtDNA for certain restriction endonucleases. We found that intra- and interspecific ES cell-splenocyte hybrid cells either entirely or partially lost mtDNA derived from a somatic partner, whereas ES cell-fibroblast hybrids retained mtDNA from both parents in similar ratios with a slight bias. The loss of somatic mitochondria by ES-splenocyte hybrids implies a nonrandom segregation of parental mitochondria, which was supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from the analysis of mtDNA in single cells. Preferential segregation of somatic mitochondria does not depend on the differences in sequences of the parental mtDNA, but rather on the replicative state of parental cells.  相似文献   

16.
Xin Wen 《Autophagy》2016,12(4):617-618
Autophagy, a highly regulated cellular degradation and recycling process, can occur constitutively at a basal level, and plays an essential role in many aspects of cell physiology. A recently published study (see the related punctum in Autophagy, Vol. 12, No. 4) suggests that basal autophagy is also important for maintaining the regenerative capacity of muscle stem cells, and that the decline of autophagy with aging is the cause of entry into senescence from quiescence in satellite cells.  相似文献   

17.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。  相似文献   

18.
19.
《朊病毒》2013,7(2):142-146
Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.  相似文献   

20.
PurposeTo compare the timing and efficiency of the development of Macaca mulatta, a nonhuman primate (NHP), induced pluripotent stem cell (rhiPSC) derived retinal organoids to those derived from human embryonic stem cells (hESCs).ResultsGeneration of retinal organoids was achieved from both human and several NHP pluripotent stem cell lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle‐like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single‐cell RNA sequencing was conducted at two time points; this allowed identification of cell types and developmental trajectory characterization of the developing organoids. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP‐derived iPSCs is relatively difficult compared to that of human stem cells, the generation of retinal organoids from NHP iPSCs is feasible and may be less time‐consuming due to an intrinsically faster timing of retinal differentiation.ConclusionsRetinal organoids produced from rhesus monkey iPSCs using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号