首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atwal RS  Truant R 《Autophagy》2008,4(1):91-93
We have recently published the precise definition of an aminoterminal membrane association domain in huntingtin, capable of targeting to the endoplasmic reticulum and late endosomes as well as autophagic vesicles. In response to ER stress induced by several pathways, huntingtin releases from membranes and rapidly translocates into the nucleus. Huntingtin is then capable of nuclear export and re-association with the ER in the absence of stress. This release is inhibited when huntingtin contains the polyglutamine expansion seen in Huntington's disease. As a result, mutant huntingtin expressing cells have a perturbed ER and an increase in autophagic vesicles. Here, we discuss the potential function of the huntingtin protein as an ER sentinel, potentially regulating autophagy in response to ER stress. We compare these recent findings to the well characterized mammalian target of rapamycin, mTor, a protein described over a decade ago as related to huntingtin structurally by leucine-rich, repetitive HEAT sequences. Since then, the described functional similarities between Huntingtin and mTor are striking, and this new information about huntingtin's direct association with autophagic vesicles indicates that this structural similarity may extend to functional similarities having an impact upon ER functionality and autophagy.  相似文献   

2.
《Autophagy》2013,9(10):1245-1246
Understanding the functional relationship between mitochondria and autophagy is critical for understanding the molecular mechanisms underlying aging and neurodegeneration. Autophagy functions in both cellular homeostasis and in quality control in the selective removal of dysfunctional mitochondria. A current working model in the field is that impaired autophagy results in a cell-damaging accumulation of dysfunctional mitochondria over time. We described our findings that respiratory-deficient mitochondria can inhibit general (macro) autophagy in Saccharomyces cerevisiae by conserved signaling pathways during amino acid starvation. These data point to an interdependence of mitochondrial function and autophagy and raise the possibility that negative regulation of autophagy by dysfunctional mitochondria is a critical contributing factor in many diseases.  相似文献   

3.
Graef M  Nunnari J 《Autophagy》2011,7(10):1245-1246
Understanding the functional relationship between mitochondria and autophagy is critical for understanding the molecular mechanisms underlying aging and neurodegeneration. Autophagy functions in both cellular homeostasis and in quality control in the selective removal of dysfunctional mitochondria. A current working model in the field is that impaired autophagy results in a cell-damaging accumulation of dysfunctional mitochondria over time. We described our findings that respiratory-deficient mitochondria can inhibit general (macro) autophagy in Saccharomyces cerevisiae by conserved signaling pathways during amino acid starvation. These data point to an interdependence of mitochondrial function and autophagy and raise the possibility that negative regulation of autophagy by dysfunctional mitochondria is a critical contributing factor in many diseases.  相似文献   

4.
The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.  相似文献   

5.
A role for Rac3 GTPase in the regulation of autophagy   总被引:1,自引:0,他引:1  
The process of autophagy is situated at the intersection of multiple cell signaling pathways, including cell metabolism, growth, and death, and hence is subject to multiple forms of regulation. We previously reported that inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt), which catalyzes the final step in the post-translational prenylation of so-called CAAX proteins, results in the induction of autophagy which enhances cell death in some cancer cells. In this study, using siRNA-mediated knockdown of a group of small GTPases that are predicted Icmt substrates, we identify Rac3 GTPase as a negative regulator of the process of autophagy. Knockdown of Rac3, but not the closely related isoforms Rac1 and Rac2, results in induction of autophagy. Ectopic expression of Rac3, significantly rescues cells from autophagy and cell death induced by Icmt inhibition, strengthening the notion of an isoform-specific autophagy regulatory function of Rac3. This role of Rac3 was observed in multiple cell lines with varying Rac subtype expression profiles, suggesting its broad involvement in the process. The identification of this less-studied Rac member as a novel regulator provides new insight into autophagy and opens opportunities in identifying additional regulatory inputs of the process.  相似文献   

6.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

7.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

8.
9.
《Autophagy》2013,9(8):1269-1270
Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.  相似文献   

10.
11.
A dual role for Ca(2+) in autophagy regulation   总被引:1,自引:0,他引:1  
Autophagy is a cellular process responsible for delivery of proteins or organelles to lysosomes. It participates not only in maintaining cellular homeostasis, but also in promoting survival during cellular stress situations. It is now well established that intracellular Ca2+ is one of the regulators of autophagy. However, this control of autophagy by intracellular Ca2+ signaling is the subject of two opposite views. On the one hand, the available evidence indicates that intracellular Ca2+ signals, and mainly inositol 1,4,5-trisphosphate receptors (IP3Rs), suppress autophagy. On the other hand, elevated cytosolic Ca2+ concentrations ([Ca2+]cyt) were also shown to promote the autophagic process. Here, we will provide a critical overview of the literature and discuss both hypotheses. Moreover, we will suggest a model explaining how changes in intracellular Ca2+ signaling can lead to opposite outcomes, depending on the cellular state.  相似文献   

12.
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self‐degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.  相似文献   

13.
The protein domain responsible for the interaction of tau with tubulin has been identified. Biophysical studies indicated that the synthetic peptide Val187-Gly204 (VRSKIG-STENLKHQPGGG) from the repetitive sequence on tau binds to two sites on the tubulin heterodimer and to one site on each of the microtubule-associated protein-interacting C-terminal tubulin peptides alpha(430-441) and beta(422-434). The binding data showed a relatively stronger interaction of Val187-Gly204 with beta(422-434) as compared to that with alpha(430-441). The interaction of this tau peptide with either alpha or beta tubulin peptides appears to be associated with conformational changes in both the tau and the tubulin peptides. The beta tubulin peptide also appears to induce a structural change of tau fragment Val218-Gly235. Interestingly, tau peptides Val187-Gly204 and Val218-Gly235 induced tubulin self-assembly in a cold-reversible fashion, and incorporated into the assembled polymers. The specificity of the interaction of the tau peptide was supported by the competition of tau protein for the interaction with the tubulin polymer. In addition, the tau peptide appears to contain the principal antigenic determinant(s) recognized by anti-idiotypic antibodies that react with the tubulin binding domains on microtubule-associated proteins. The present findings together with the demonstration of the presence of multiple sites for the binding of the alpha(430-441) and beta(422-434) tubulin fragments to tau, and the existence of repetitive sequences on tau, strongly support the hypothesis that the region of tau defined by the repetitive sequences is involved in its interaction with tubulin.  相似文献   

14.
15.
NRADD (neurotrophin receptor alike death domain protein) is a novel protein with transmembrane and cytoplasmic regions highly homologous to death receptors, particularly p75(NTR). However, the short N-terminal domain is unique. Expression of NRADD induced apoptosis in a number of cell lines. The apoptotic mechanism involved the activation of caspase-8 and execution of apoptosis without requiring mitochondrial components. The activation of this death receptor-like mechanism required the N-terminal domain, which is N-glycosylated and needed for subcellular targeting. Deletion of the N-terminal domain produced a dominant-negative form of NRADD that protected neurons and Schwann cells from a variety of endoplasmic reticulum (ER) stressors. NRADD may therefore be a necessary component for generating an ER-induced proapoptotic signal.  相似文献   

16.
Traffic between the nucleus and cytoplasm takes place through a macromolecular structure termed the nuclear pore complex. To understand how the vital process of nucleocytoplasmic transport occurs, the contribution of individual pore proteins must be elucidated. One such protein, the nucleoporin Nup153, is localized to the nuclear basket of the pore complex and has been shown to be a central component of the nuclear transport machinery. Perturbation of Nup153 function was demonstrated previously to block the export of several classes of RNA cargo. Moreover, these studies also showed that Nup153 can stably associate with RNA in vitro. In this study, we have mapped a domain within Nup153, encompassing amino acids 250-400 in human Nup153, that is responsible for RNA association. After cloning this region of Xenopus Nup153, we performed a cross-species analysis. Despite variation in sequence conservation between Drosophila, Xenopus, and human, this domain of Nup153 displayed robust RNA binding activity in each case, indicating that this property is a hallmark feature of Nup153 and pointing toward a subset of amino acid residues that are key to conferring this ability. We have further determined that a recombinant fragment of Nup153 can bind directly to RNA and that this fragment can interact with endogenous RNA targets. Our findings identify a functionally conserved domain in Nup153 and suggest a role for RNA binding in Nup153 function at the nuclear pore.  相似文献   

17.
Autophagy is an evolutionarily conserved catabolic process through which different components of the cells are sequestered into double-membrane cytosolic vesicles called autophagosomes, and fated to degradation through fusion with lysosomes. Autophagy plays a major function in many physiological processes including response to different stress factors, energy homeostasis, elimination of cellular organelles and tissue remodeling during development. Consequently, autophagy is strictly controlled and post-translational modifications such as phosphorylation and ubiquitination have long been associated with autophagy regulation. In contrast, the importance of acetylation in autophagy control has only emerged in the last few years. In this review, we summarize how previously identified histone acetylases and deacetylases modify key autophagic effector proteins, and discuss how this has an impact on physiological and pathological cellular processes.  相似文献   

18.
19.
In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.  相似文献   

20.
Autophagy is one of the cellular adaptive processes that provide protection against many pathological conditions like infection, cancer, neurodegeneration, and aging. Recent evidences suggest that ubiquitination plays an important role in degradation of proteins or defective organelle either through proteasome or autophagy. In this study, we describe the role of TRIM13, ER resident ubiquitin E3 ligase in induction of autophagy and its role during ER stress. The ectopic expression of TRIM13 in HEK-293 cells induces autophagy. Domain mapping showed that coiled-coil (CC) domain is required for induction of autophagy. TRIM13 is stabilized during ER stress, interacts with p62/SQSTM1 and co-localizes with DFCP1. TRIM13 regulates initiation of autophagy during ER stress and decreases the clonogenic ability of the cells. This study for the first time demonstrates the role of TRIM13 in induction of autophagy which may play an important role in regulation of ER stress and may act as tumor suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号