首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan P  Qing G  Qu Z  Wu CC  Rabson A  Xiao G 《Autophagy》2007,3(6):600-603
The IkappaB kinase (IKK)/NFkappaB signaling pathway plays an essential role in the development and survival of many types of cancers including adult T-cell leukemia (ATL) caused by the human T-cell leukemia virus type I (HTLV-I) infection. Accordingly, targeting NFkappaB provides an attractive strategy for cancer therapy. We recently found that specific inhibition of Hsp90 by geldanamycin (GA) results in autophagic degradation of IKK and NFkappaB-inducing kinase (NIK), an upstream kinase of IKK, and inactivation of NFkappaB in various cell lines. Here, we further report that GA inhibition of Hsp90 also led to IKK autophagic degradation and NFkappaB inhibition in both HTLV-transformed T cells and ATL-derived cell lines. Importantly, GA treatment led to efficient apoptosis of these malignant cells, whereas inhibition of autophagic degradation of IKK significantly ameliorated the cytotoxic effect of GA. These findings thus not only provide mechanistic insights into the tumor suppression function of autophagy and the anti-tumor activity of GA, but also suggest an immediate therapeutic strategy for ATL and other diseases associated with NFkappaB activation by targeting autophagic degradation of the central NFkappaB activating kinases.  相似文献   

2.
Non-canonical NF-κB signaling is controlled by the precise regulation of NF-κB inducing kinase (NIK) stability. NIK is constitutively ubiquitylated by cellular inhibitor of apoptosis (cIAP) proteins 1 and 2, leading to its complete proteasomal degradation in resting cells. Following stimulation, cIAP-mediated ubiquitylation of NIK ceases and NIK is stabilized, allowing for inhibitor of κB kinase (IKK)α activation and non-canonical NF-κB signaling. Non-canonical NF-κB signaling is terminated by feedback phosphorylation of NIK by IKKα that promotes NIK degradation; however, the mechanism of active NIK protein turnover remains unknown. To address this question, we established a strategy to precisely distinguish between basal degradation of newly synthesized endogenous NIK and induced active NIK in stimulated cells. Using this approach, we found that IKKα-mediated degradation of signal-induced activated NIK occurs through the proteasome. To determine whether cIAP1 or cIAP2 play a role in active NIK turnover, we utilized a Smac mimetic (GT13072), which promotes degradation of these E3 ubiquitin ligases. As expected, GT13072 stabilized NIK in resting cells. However, loss of the cIAPs did not inhibit proteasome-dependent turnover of signal-induced NIK showing that unlike the basal regulatory mechanism, active NIK turnover is independent of cIAP1 and cIAP2. Our results therefore establish that the negative feedback control of IKKα-mediated NIK turnover occurs via a novel proteasome-dependent and cIAP-independent mechanism.  相似文献   

3.
4.
5.
Sun SC 《Cell research》2011,21(1):71-85
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.  相似文献   

6.
Gambogic acid (GB) is an important anti-cancer drug candidate, but the target protein by which it exerts its anti-cancer effects has not been identified. This study is the first to show that GB inhibits heat shock protein 90 (Hsp90) and down-regulates TNF-α/NF-κB in HeLa cells. The effects of GB on Hsp90 were studied by characterizing its physical interactions with Hsp90 upon binding, the noncompetitive inhibition of Hsp90 ATPase activity, and the degradation of Hsp90 client proteins (i.e., Akt, IKK) in HeLa cells. GB seems to bind to the N-terminal ATP-binding domain of Hsp90. Additionally, GB suppresses the activation of TNF-α/NF-κB and decreases XIAP expression levels and the ratio of Bcl-2/Bax, which in turn induces HeLa cell apoptosis. Thus, GB represents a promising therapeutic agent for cancer; it may also be useful as a probe to increase understanding of the biological functions of Hsp90.  相似文献   

7.
Qing G  Yan P  Xiao G 《Cell research》2006,16(11):895-901
Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy  相似文献   

8.
9.
Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) acts as a molecular switch regulating cardiovascular Ca2+ handling and contractility in health and disease. Activation of CaMKIIδ is also known to regulate cardiovascular inflammation and is reported to be required for pro-inflammatory NF-κB signalling. In this study the aim was to characterise how CaMKIIδ interacts with and modulates NF-κB signalling and whether this interaction exists in non-contractile cells of the heart. Recombinant or purified CaMKIIδ and the individual inhibitory -κB kinase (IKK) proteins of the NF-κB signalling pathway were used in autoradiography and Surface Plasmon Resonance (SPR) to explore potential interactions between both components. Primary adult rat cardiac fibroblasts were then used to study the effects of selective CaMKII inhibition on pharmacologically-induced NF-κB activation as well as interaction between CaMKII and specific IKK isoforms in a cardiac cellular setting. Autoradiography analysis suggested that CaMKIIδ phosphorylated IKKβ but not IKKα. SPR analysis further supported a direct interaction between CaMKIIδ and IKKβ but not between CaMKIIδ and IKKα or IKKγ. CaMKIIδ regulation of IκΒα degradation was explored in adult cardiac fibroblasts exposed to pharmacological stimulation. Cells were stimulated with agonist in the presence or absence of a CaMKII inhibitor, autocamtide inhibitory peptide (AIP). Selective inhibition of CaMKII resulted in reduced NF-κB activation, as measured by agonist-stimulated IκBα degradation. Importantly, and in agreement with the recombinant protein work, an interaction between CaMKII and IKKβ was evident following Proximity Ligation Assays in adult cardiac fibroblasts. This study provides new evidence supporting direct interaction between CaMKIIδ and IKKβ in pro-inflammatory signalling in cardiac fibroblasts and could represent a feature that may be exploited for therapeutic benefit.  相似文献   

10.
Wang HC  Tsai YL  Wu YC  Chang FR  Liu MH  Chen WY  Wu CC 《PloS one》2012,7(5):e37764
Withanolides are a large group of steroidal lactones found in Solanaceae plants that exhibit potential anticancer activities. We have previously demonstrated that a withanolide, tubocapsenolide A, induced cycle arrest and apoptosis in human breast cancer cells, which was associated with the inhibition of heat shock protein 90 (Hsp90). To investigate whether other withanolides are also capable of inhibiting Hsp90 and to analyze the structure-activity relationships, nine withanolides with different structural properties were tested in human breast cancer cells MDA-MB-231 and MCF-7 in the present study. Our data show that the 2,3-unsaturated double bond-containing withanolides inhibited Hsp90 function, as evidenced by selective depletion of Hsp90 client proteins and induction of Hsp70. The inhibitory effect of the withanolides on Hsp90 chaperone activity was further confirmed using in vivo heat shock luciferase activity recovery assays. Importantly, Hsp90 inhibition by the withanolides was correlated with their ability to induce cancer cell death. In addition, the withanolides reduced constitutive NF-κB activation by depleting IκB kinase complex (IKK) through inhibition of Hsp90. In estrogen receptor (ER)-positive MCF-7 cells, the withanolides also reduced the expression of ER, and this may be partly due to Hsp90 inhibition. Taken together, our results suggest that Hsp90 inhibition is a general feature of cytotoxic withanolides and plays an important role in their anticancer activity.  相似文献   

11.
12.
The role of ubiquitylation in signal-induced activation of nuclear factor -κB (NF-κB) has been well established, while its involvement in maintaining NF-κB basal activity is less certain. Recent evidences demonstrate that in unstimulated cells, NF-κB homeostasis is actually the result of opposing forces: pro-activating activity of the IκB Kinase (IKK) and inhibitory activity of the Inhibitor of -κB (IκB) proteins. It is well known that endogenous de-ubiquitylating mechanisms are less effective on Ub motifs containing UbG76A. Here, we show that overexpression of a ubiquitin (Ub) G76A mutant leads to persistent activation of the IKK/NF-κB pathway in the absence of extra-cellular stimuli. In contrast, no effects on NF-κB activation were observed upon expression of UbK48R and UbK63R mutants, which are known to impair elongation of Lys48- and Lys63-linked poly-ubiquitin chains, respectively. Overall, these findings indicate that under basal conditions, the rate of de-ubiquitylation, rather than that of substrate ubiquitylation, is critical for the maintenance of appropriate levels of IKK/NF-κB activity.  相似文献   

13.
As a wide variety of pro-inflammatory cytokines are involved in the development of rheumatoid arthritis (RA), there is an urgent need for the discovery of novel therapeutic strategies. Among these, the inhibition of the NF-κB inducing kinase (NIK), a key enzyme of the NF-κB alternative pathway activation, represents a potential interesting approach. In fact, NIK is involved downstream of many tumor necrosis factor receptors (TNFR) like CD40, RANK or LTβR, implicated in the pathogenesis of RA. But, up to now, the number of reported putative NIK inhibitors is extremely limited. In this work, we report a virtual screening (VS) study combining various filters including high-throughput docking using a 3D-homology model and ranking by using different scoring functions. This work led to the identification of two molecular fragments, 4H-isoquinoline-1,3-dione (5) and 2,7-naphthydrine-1,3,6,8-tetrone (6) which inhibit NIK with an IC50 value of 51 and 90 μM, respectively. This study opens new perspectives in the field of the NF-κB alternative pathway inhibition.  相似文献   

14.
15.
16.
17.
IκB kinase β (IKKβ) plays a crucial role in biological processes, including immune response, stress response, and tumor development by mediating the activation of various signaling molecules such as NF-κB. Extensive studies on the mechanisms underlying IKK activation have led to the identification of new activators and have facilitated an understanding of the cellular responses related to NF-κB and other target molecules. However, the molecular processes that modulate IKK activity are still unknown. In this study, we show that KEAP1 is a new IKK binding partner, which is responsible for the down-regulation of TNFα-stimulated NF-κB activation. The E(T/S)GE motif, which is found only in the IKKβ subunit of the IKK complex, is essential for interaction with the C-terminal Kelch domain of KEAP1. Reduction of KEAP1 expression by small interfering RNA enhanced NF-κB activity, and up-regulated the expression of NF-κB target genes. Ectopic expression of KEAP1 decreased the expression of IKKβ, which was restored by an autophagy inhibitor. IKK phosphorylation stimulated by TNFα was blocked by KEAP1. Our data demonstrate that KEAP1 is involved in the negative regulation of NF-κB signaling through the inhibition of IKKβ phosphorylation and the mediation of autophagy-dependent IKKβ degradation.  相似文献   

18.
Heat shock (HS) was found to suppress the IkappaB/NF-kappaB cascade via the inhibition of IkappaB kinase (IKK) activity; however, the mechanism has not been clear. This study was undertaken to elucidate the detail of the mechanism involved. TNF-alpha-induced activation of IKK was suppressed by HS in human bronchial epithelial cells, and this was associated with the absence of IKK in the immunoprecipitates. It was not due to a degradation of IKK, but due to a conversion of IKK from a soluble to an insoluble form. IKK lost its activity rapidly upon exposure to HS in vitro. The time course of the insolubilization of IKK coincided with the decrease in IKK activity. However, inhibition of IKK insolubilization by the induction of thermotolerance did not reverse the HS-induced suppression of IKK activation and IkappaBalpha degradation. Upstream activators of IKK, such as NF-kappaB-inducing kinase (NIK) and IL-1R-associated kinase (IRAK) were also insolubilized by HS. The HS-induced insolubilization of NIK was not blocked by the induction of thermotolerance. Overexpression of NIK resumed TNF-alpha-induced activation of IKK in thermotolerant cells. These results indicate that the loss of activity of NIK, IRAK, and IKK through insolubilization is responsible for the HS-induced suppression of IkappaB/NF-kappaB pathway.  相似文献   

19.
20.
The Inhibitor of Nuclear Factor Kappa B Kinase Subunit Epsilon (IKKε) is an oncogenic protein that is up-regulated in various types of human cancers, including breast tumors. This kinase regulates diverse processes associated with malignant progression including proliferation, invasion, and metastasis. To delve into the molecular mechanisms regulated by this kinase we performed RNA-seq and network analysis of breast cancer cells overexpressing IKKε. We found that the TNF/NF-κB cascade was clearly enriched, and in accordance, NF-κB pathway inhibition in these cells resulted in a decreased expression of IKKε target genes. Interestingly, we also found an enrichment of a mammary stemness functional pathway. Upregulation of IKKε led to an increase of a stem CD44+/CD24−/low population accompanied by a high expression of stem markers such as ALDH1A3, NANOG, and KLF4 and with an increased clonogenic ability and mammosphere formation capacity. These results were corroborated with in vivo dilution assays in zebrafish embryos which showed a significant increase in the number of Cancer Stem Cells (CSCs). Finally, we found that Triple-Negative breast tumors, which are enriched in CSCs, display higher levels of IKKε than other breast tumors, supporting the association of this kinase with the stem phenotype. In conclusion, our results highlight the role of IKKε kinase in the regulation of the stem cell phenotype in breast cancer cells, as assessed by expression, functional and in vivo assays. These results add to the potential use of this kinase as a therapeutic target in this neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号