首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lam D  Golstein P 《Autophagy》2008,4(3):349-350
Three main advantages make Dictyostelium a very favorable model to study the induction of autophagic cell death in vitro. First, its small, sequenced and haploid genome facilitates genetic approaches. Second, the Dictyostelium genome does not encode the two main molecular families involved in apoptosis (caspases and bcl-2 family), which therefore cannot interfere in this case with autophagic cell death. Third, induction of autophagic cell death follows in this case a two-step process, namely starvation-induced sensitization leading to autophagy but not to death, followed by a DIF-1-induced pathway leading to cell death proper. The latter, DIF-1-induced pathway is defined experimentally, through sequential additions, and most important also genetically, through random mutagenesis leading in particular to the preparation and study of an iplA mutant. The iplA gene encodes the IP3 Receptor, and its mutation leads to the absence of vacuolization and of death when autophagic cell death is triggered. Further study of the DIF-1 pathway should shed additional light on the induction of autophagic cell death (as opposed to that of just autophagy) in Dictyostelium and by extension perhaps in other organisms.  相似文献   

2.
The signaling pathways governing pathophysiologically important autophagic (ACD) and necrotic (NCD) cell death are not entirely known. In the Dictyostelium eukaryote model, which benefits from both unique analytical and genetic advantages and absence of potentially interfering apoptotic machinery, the differentiation factor DIF leads from starvation-induced autophagy to ACD, or, if atg1 is inactivated, to NCD. Here, through random insertional mutagenesis, we found that inactivation of the iplA gene, the only gene encoding an inositol 1,4,5-trisphosphate receptor (IP3R) in this organism, prevented ACD. The IP3R is a ligand-gated channel governing Ca2+ efflux from endoplasmic reticulum stores to the cytosol. Accordingly, Ca2+-related drugs also affected DIF signaling leading to ACD. Thus, in this system, a main pathway signaling ACD requires IP3R and further Ca2+-dependent steps. This is one of the first insights in the molecular understanding of a signaling pathway leading to autophagic cell death.  相似文献   

3.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

4.
Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP–induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms.  相似文献   

5.
《Autophagy》2013,9(5):501-508
We investigated the role of Atg1 in autophagic cell death (ACD) in a Dictyostelium monolayer model. The model is especially propitious, not only because of genetic tractability and absence of apoptosis machinery, but also because induction of ACD requires two successive exogenous signals, first the combination of starvation and cAMP, second the differentiation factor DIF-1. This enables one to analyze separately first-signal-induced autophagy and subsequent second-signal-induced ACD. We used mutants of atg1, a gene that plays an essential role in the initiation of autophagy. Upon starvation/cAMP, in contrast to parental cells, atg1 mutant cells showed irreversible lesions, clearly establishing a protective role for Atg1. Upon subsequent exposure to DIF-1 or to more ACD-specific second signals, starved parental cells progressed to ACD, but starved atg1 mutant cells did not, showing that Atg1 was required for ACD. Thus, in the same cells Atg1 was required in two apparently opposite ways, upon first-signaling for cell survival and upon second-signaling for ACD. Our findings strongly suggest that Atg1, thus presumably autophagy, protects the cells from starvation-induced cell death, allowing subsequent induction of ACD by the second signal. ACD is therefore not only “with” autophagy (since

it showed signs of autophagy throughout), but is also “allowed by” autophagy. This does not exclude a role for autophagy also after second signaling. These results may account for discrepancies reported in the literature, encourage searches for second signals in different developmental models of ACD, and incite caution in autophagy-related therapeutic attempts.  相似文献   

6.
《Autophagy》2013,9(7):997-998
Pancreatic cancer, the fourth leading cause of cancer-related death in the United States, is resistant to current chemotherapies. Therefore, identification of different pathways of cell death is important to develop novel therapeutics. Our previous study has shown that triptolide, a diterpene triepoxide, inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. However, the mechanism by which triptolide kills pancreatic cancer cells was not known, hence, this study aimed at elucidating it. Our study reveals that triptolide kills diverse types of pancreatic cancer cells by two different pathways; it induces caspase-dependent apoptotic death in some cell lines and death via a caspase-independent autophagic pathway in the other cell lines tested. Triptolide-induced autophagy requires autophagy-specific genes, atg5 or beclin 1, and its inhibition results in cell death via the apoptotic pathway, whereas inhibition of both autophagy and apoptosis rescues triptolide-mediated cell death. Our study shows for the first time that induction of autophagy by triptolide has a pro-death role in pancreatic cancer cells. Since triptolide kills diverse pancreatic cancer cells by different mechanisms, it makes an attractive chemotherapeutic agent for future use against a broad spectrum of pancreatic cancers.  相似文献   

7.
《Autophagy》2013,9(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.

Addendum to: Berry DL, Baehrecke EH. Growth arrest and autophagy are required for programmed salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48.  相似文献   

8.
《Autophagy》2013,9(5):680-691
Autophagic cell death in Dictyostelium can be dissociated into a starvation-induced sensitization stage and a death induction stage. A UDP-glucose pyrophosphorylase (ugpB) mutant and a glycogen synthase (glcS) mutant shared the same abnormal phenotype. In vitro, upon starvation alone mutant cells showed altered contorted morphology, indicating that the mutations affected the pre-death sensitization stage. Upon induction of cell death, most of these mutant cells underwent death without vacuolization, distinct from either autophagic or necrotic cell death. Autophagy itself was not grossly altered as shown by conventional and electron microscopy. Exogenous glycogen or maltose could complement both ugpB- and glcS- mutations, leading back to autophagic cell death. The glcS- mutation could also be complemented by 2-deoxyglucose that cannot undergo glycolysis. In agreement with the in vitro data, upon development glcS- stalk cells died but most were not vacuolated. We conclude that a UDP-glucose derivative (such as glycogen or maltose) plays an essential energy-independent role in autophagic cell death.  相似文献   

9.
10.
《Autophagy》2013,9(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates

such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

11.
12.
《Autophagy》2013,9(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr?/? mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr?/? mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr?/? mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr?/? mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.  相似文献   

13.
《Autophagy》2013,9(5):669-679
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy induced apoptosis. In this study, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in preautopghagosomal and autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression and the number of GFP-LC3-II-labeled autophagosome (punctuated pattern) positive cells and autophagic cell death (p  相似文献   

14.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   

15.
《Autophagy》2013,9(4):571-572
This study summarizes our most recent findings on the mechanisms underlying the cadmium-induced death of mesangial cells, which leads to nephrotoxicity. Multiple pathways participate in cadmium-induced nephrotoxicity. In the ROS-GSK-3β autophagy pathway, cadmium induces ROS most likely from the mitochondria, and the ROS consequently activate GSK-3β leading to autophagic cell death. In the calcium-ERK autophagy and apoptosis pathway, cadmium stimulates calcium release from the endoplasmic reticulum, which activates ERK leading to predominantly autophagic cell death and a minor level of apoptotic cell death. In the calcium-mitochondria-caspase apoptosis pathway, cadmium-induced elevation of calcium depolarizes the mitochondrial membrane potential and then activates caspase signaling leading to apoptosis. A proposed model for cadmium-induced autophagy and apoptosis leading to nephrotoxicity is summarized in Figure 1.  相似文献   

16.
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation, and it results in renal tubular epithelial cells undergoing cell death. We observed an increase in autophagosomes in the tubular epithelial cells of I/R-injured mouse models, and in biopsy specimens from human transplanted kidney. However, it remains unclear whether autophagy functions as a protective pathway, or contributes to I/R-induced cell death. Here, we employed the human renal proximal tubular epithelial cell line HK-2 in order to explore the role of autophagy under hypoxia (1% O2) or activation of reactive oxygen species (500 μM H2O2). When compared to normoxic conditions, 48 h of hypoxia slightly increased LC3-labeled autophagic vacuoles and markedly increased LAMP2-labeled lysosomes. We observed similar changes in the mouse IR-injury model. We then assessed autophagic generation and degradation by inhibiting the downstream lysosomal degradation of autophagic vacuoles using lysosomal protease inhibitor. We found that autophagosomes increased markedly under hypoxia in the presence of lysosomal protease inhibitors, thus suggesting that hypoxia induces high turnover of autophagic generation and degradation. Furthermore, inhibition of autophagy significantly inhibited H2O2-induced cell death. In conclusion, high turnover of autophagy may lead to autophagic cell death during I/R injury.  相似文献   

17.
“Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy.  相似文献   

18.
The differentiation-inducing factor-1 (DIF-1) is a lipophilic signal molecule (chlorinated alkylphenone) that induces stalk cell differentiation in the cellular slime mold Dictyostelium discoideum. In addition, DIF-1 and its derivatives have been shown to possess anti-leukemic activity and glucose consumption-promoting activity in vitro in mammalian cells. In this study, to assess the chemical structure-effect relationship of DIF-1, we synthesized eight derivatives of DIF-1 and investigated their stalk cell-inducing activity in Dictyostelium cells and pharmacological activities in mammalian cells. Of the derivatives, two amide derivatives of DIF-1, whose hydrophobic indexes are close to that of DIF-1, induced stalk cell differentiation as strongly as DIF-1 in Dictyostelium cells. It was also found that some derivatives suppressed cell growth in human K562 leukemia cells and promoted glucose consumption in mouse 3T3-L1 cells. These results give us valuable information as to the chemical structure-effect relationship of DIF-1.  相似文献   

19.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

20.
《Autophagy》2013,9(8):922-923
Although several oncogenes enhance autophagic flux, the molecular mechanism and consequences of oncogene-induced autophagy remain to be clarified. We have recently shown that expression of oncogenic H-RasV12 promotes autophagy through upregulation of Beclin 1 and the BH3-only protein Noxa. H-Ras-expressing cells undergo autophagic cell death as a result of Noxa-mediated displacement of Mcl-1 and Bcl-xL from Beclin 1. Oncogenic H-Ras-induced death is attenuated through knockdown of BECLIN 1, ATG5, or ATG7, or through overexpression of Mcl-1, Bcl-2, Bcl-xL and their close relatives. These observations suggest that high-intensity oncogene activation may be selected against by promoting excessive autophagy, leading to cell death. Consequently, such oncogenes may select for cells with a reduced capacity for autophagy, either through loss of a BECLIN 1 allele or through upregulation of negative regulators of Beclin 1, such as Bcl-2 family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号