首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Hexavalent chromium Cr(VI) is a common environmental pollutant that is treated by its reduction to the trivalent form Cr(III). The latter can be re-oxidized to the toxic form, Cr(VI), under specific conditions. A study was conducted on the removal of Cr(III) to eliminate the hazard imposed by its presence in soil as there has been some evidence that organic compounds can decrease its sorption. The effect of addition of negatively-charged biosurfactants (rhamnolipids) on chromium contaminated kaolinite was studied. Results showed that the rhamnolipids have the capability of extracting 25% portion of the stable form of chromium, Cr(III), from the kaolinite, under optimal conditions. The removal of hexavalent chromium was also enhanced compared to water by a factor of 2 using a solution of rhamnolipids. Results from the sequential extraction procedure showed that rhamnolipids remove Cr(III) mainly from the carbonate and oxide/hydroxide portions of the kaolinite. The rhamnolipids had also the capability of reducing close to 100% of the extracted Cr(VI) to Cr(III) over a period of 24 days. This study indicated that rhamnolipids could be beneficial for the removal or long–term conversion of chromium Cr(VI) to Cr(III).  相似文献   

2.
Comparative studies on the adsorption of Cr(VI) ions on to various sorbents   总被引:2,自引:0,他引:2  
The adsorption of Cr(VI) ions onto various sorbents (chitin, chitosan, ion exchangers; Purolite CT-275 (Purolite I), Purolite MN-500 (Purolite II) and Amberlite XAD-7) was investigated. Batch adsorption experiments were carried out as a function of pH, agitation period and concentration of Cr(VI) ions. The optimum pH for Cr(VI) adsorption was found as 3.0 for chitin and chitosan. The Cr(VI) uptake by ion exchangers was not very sensitive to changes in the pH of the adsorption medium. The maximum chromium sorption occurred at approximately 50 min for chitin, 40 min for Purolite II and 30 min for chitosan, Purolite I and Amberlite XAD-7. The suitability of the Freundlich and Langmuir adsorption models were also investigated for each chromium-sorbent system. Adsorption isothermal data could be accurately interpreted by the Langmuir equation for chitosan, chitin, Purolite I and Purolite II and by the Freundlich equation for chitosan, chitin and Amberlite XAD-7. The chromium(VI) ions could be removed from the sorbents rapidly by treatment with an aqueous EDTA solution and at the same time the sorbent regenerated and also could be used again to adsorb by heavy metal ions. The results showed that, chitosan, which is a readily available, economic sorbent, was found suitable for removing chromium from aqueous solution.  相似文献   

3.
Abstract

A simple, fast and sensitive spectrophotometric method for the simultaneous determination of Cr(III) and Cr(VI) in effluents and contaminated waters using a UV-visible spectrophotometer, which operates with an advanced software for multicomponent analysis, is proposed. The method consists in the complexation of Cr (III) with EDTA and reaction of Cr(VI) with diphenylcarbazide (DPC). Variables, such as pH and colour stability time, were studied. The effect of concomitant ions on the simultaneous Cr(III) and Cr(VI) determination was also investigated. The sums of the chromium species concentrations obtained by the proposed method were compared with the total chromium concentrations found by electrothermal atomic absorption spectrometry. Recoveries of the chromium species between 75 and 136% were obtained for spiked samples. The linear working range for Cr(III) was 0.5-30 mg L?1, while for Cr(VI) was 0.005-0.30 mg L?1. The detection limits were 0.3 mg L?1 for Cr(III) and 0.003 mg L?1 for Cr(VI) while the quantification limits were 1.0 mg L?1 for Cr(III) and 0.01 mg L?1 for Cr(VI).  相似文献   

4.
Abstract

The present study explores the sorption properties of shelled Moringa oleifera seeds (SMOS) for removal of two environmentally important oxidation states of chromium (trivalent and hexavalent) from an aqueous system on the laboratory scale. Sorption studies reveal the optimum conditions for the removal of 81.02%; Cr (III) and 88.15% Cr (VI) as follows: biomass dosage (4.0 g), metal concentration [25mg/L for Cr (III); 50mg/L for Cr (VI)], contact time (40 minutes) at pH 6.5 and 2.5 respectively. The adsorption data were found to fit well both the Freundlich and Langmuir isotherms. Characterization of the seed powder by FTIR showed the clear presence of amino acid moieties having both positively charged amino and negatively charged carboxylic groups and confirmed that biosorption involves amino acid-chromium interactions. SEM studies of native and exhausted [Cr(III) and Cr(VI)] treated SMOS revealed large spherical clusters having a pore area of 8.66 µm2 in the case of native SMOS while dense agglomerated etched dendrite type morphology have a pore area of 0.80 µm2 in Cr (III) and 0.78 µm2 in Cr (VI) treated SMOS The spent biosorbent was regenerated and found to be effectively reusable for four cycles.  相似文献   

5.
Cr(VI) immobilization in systems containing Fe-bearing soil minerals was studied in batch and column systems. Batch experiments showed that water chemistry such as solution pH and Cr(VI) concentration had a pronounced impact on Cr(VI) removal by Fe-bearing soil minerals. Acidic conditions were observed to be more favorable for enhanced Cr(VI) removal. The dependence of Cr(VI) removal on Cr(VI) concentration indicated that there were limited numbers of surface sites on Fe-bearing minerals responsible for Cr(VI) removal. A complexing agent, citrate, significantly enhanced both Cr(VI) removal and total Fe-dissolution from the mineral surfaces relative to non-citrate containing systems, and the iron dissolved from the mineral surfaces was in Fe(III) oxidation form, implying that Cr(VI) removal occurred mainly on mineral surfaces, and the surface Fe(II) sites played an active role in Cr(VI) reduction. The results from column experiments showed that the accumulation of surface precipitates resulted in clogging of pore spaces, thereby creating preferential flow paths within the column. However, the addition of citrate significantly prevented the accumulation of surface precipitates due to the formation of highly soluble Fe–citrate complexes. SEM images revealed that the precipitates accumulated in the column had sponge-like shapes. The energy-dispersive spectroscopy analysis provided further evidence that the surface precipitates formed also contained Cr species as well as Fe. Overall it is clear that Fe-bearing minerals may serve as an effective reducing agent for in-situ reductive immobilization of hexavalent chromium in subsurface systems.  相似文献   

6.
In the present study, adsorption of Cr(III) and Cr(VI) on Pumice (Pmc), Yarikkaya (YK) brown coal, Chelex-100, and Lewatit MP 62 is examined at room temperature and at initial chromium concentration of 1.0 x 10(-3) mol/L. Column method was carried out as a function of pH, concentration of Cr(III) and Cr(VI) ions, volume of samples and flow rate. The experimental data were evaluated by Freundlich and Langmuir isotherm models. The dynamic breakthrough capacities of the adsorbents for Cr(III) and Cr(VI) were calculated. The maximum chromium sorption occurred at 5 mL/min flow rate and 25 mL volume for all adsorbents. The results showed that the two readily available adsorbents namely Pmc and YK, were suitable for removing chromium from aqueous solution.  相似文献   

7.
Chromium (III) accumulation in high biomass agricultural crops, sunflower (Helianthus annum) and Indian mustard (Brassica juncea) was studied using four soils (pH 4.6 to 7.6) contaminated with different rates of CrCl3.6H2O in the presence of synthetic chelate and organic acids. Chromium is essential for normal glucose metabolism in humans and animals, but its contamination and recovery from soils is of environmental concern. Adding ethylenediaminetetraacetic acid (EDTA), citric acid, or oxalic acid to Cr(III)‐contaminated soils significantly increased Cr concentration in plant shoots and roots. Adding Cr(III) complexes of EDTA, citric acid, and oxalic acid to soils dramatically increased (>200‐fold) Cr concentration in shoots and roots. Plant growth was severely decreased but was dependent on soil type, chelate rate, form, and time of chelate application. Chelates and organic acids enhanced Cr(III) accumulation, but its toxic effects were not avoided. Chromium(III) complexes were as toxic to plants as Cr(VI). The phytoaccumulation and recovery of Cr(III) from soils were limited and depended on soil type.  相似文献   

8.
Interactions of the Pseudomonas stutzeri KC siderophore pyridine-2,6-bis(thiocarboxylic acid) (pdtc) with chromium(VI), mercury(II), cadmium(II), lead(II), and arsenic(III) are described. Pdtc was found to reduce Cr(VI) to Cr(III) in both bacterial cultures and in abiotic reactions with chemically synthesized pdtc. Cr(III) subsequently formed complexes with pdtc and pdtc hydrolysis products, and their presence was confirmed using electrospray ionization-mass spectrometry (ESI-MS). Cr(III):pdtc complexes were found to slowly release Cr(III) as chromium sulfide and possibly Cr(III) oxides. Pdtc also formed poorly soluble complexes with Hg, Cd, Pb, and As(III). Hydrolysis of those complexes led to the formation of their respective metal sulfides as confirmed by energy dispersive X-ray spectroscopy (EDS) elemental analysis. The pdtc-producing strain P. stutzeri KC showed higher tolerance to most of these metals as compared to a pdtc-negative mutant. A novel role of pdtc is postulated as its involvement in providing an extracellular pool of thiols that are used for redox processes in detoxification of the bacterial extracellular environment. These redox processes can be mediated by transition metal:pdtc complexes.  相似文献   

9.
AIMS: To isolate and analyse chromium-resistant micro-organisms suitable for bioremediation. METHODS AND RESULTS: Strain CG252, with a minimal inhibitory concentration of 500 microg ml(-1), was isolated from contaminated soils and identified as a Streptomyces sp. by 16S rDNA sequence analysis. Assays carried out at various Cr(VI) concentrations indicated that chromium removal was more efficient at lower concentrations and that this activity resulted in accumulation of Cr(III). Atomic adsorption analysis indicated that the chromium removed was not associated with cell mass and activity assays showed that the capacity to reduce Cr(VI) was most probably due to a soluble cytosolic enzyme. Cells grown as biofilms showed enhanced removal of Cr(VI) with respect to planktonic cells, while analysis of growth and colony morphology indicated that Cr(VI) had a toxic effect on this strain. CONCLUSIONS: Streptomyces sp. CG252 tolerated heavy metals and elevated levels of chromium, despite its negative effect on growth and development, and was efficient at removing Cr(VI) by promoting reduction to Cr(III). SIGNIFICANCE AND IMPACT OF THE STUDY: Strain CG252's capacity to tolerate heavy metals and to reduce Cr(VI) to the less toxic Cr(III), especially when forming biofilms, makes it a promising candidate for detoxification of sites containing this heavy metal.  相似文献   

10.
The study presented in this article investigated the influence of different Cr(III) and Cr(VI) compounds in the cultivation medium on the uptake and localization of chromium in the cell structure of the yeast Candida intermedia. The morphology of the yeast cell surface was observed by the scanning electron microscopy. Results demonstrated that the growth inhibitory concentration of Cr(III) in the cultivation medium induced changes in the yeast cell shape and affected the budding pattern, while inhibitory concentration of Cr(VI) did not cause any visible effects on morphological properties of the yeast cells. The amount of total accumulated chromium in yeast cells and the distribution of chromium between the yeast cell walls and spheroplasts were determined by atomic absorption spectroscopy. No significant differences were found neither in total chromium accumulation nor in the distribution of chromium in yeast cell walls and spheroplasts between the two of Cr(VI) compounds. Conversely, substantial differences between Cr(III) compounds were demonstrated in the total uptake as well as the localization of chromium in yeast cells.  相似文献   

11.
This study investigated the effect of rice straw char (RSC) on the immobilization of Cr(VI) in soils. The Cr(VI) sorption experiments on the RSC and RSC-amended soils were conducted using the batch method. RSC exhibited Cr(VI) reduction capacity due to its black carbon content. The addition of RSC to the soils enhanced the overall Cr(VI) immobilization of the soils, which is primarily attributed to the Cr(VI) reduction capacity of RSC. The effects of RSC amendment on the Cr(VI) sorption of the soils increased with increasing RSC content in the soils and decreased with increasing pH or anion contents in the soil solutions. After Cr(VI) was sorbed by the soils, a portion of the Cr(VI) was converted to Cr(III) and the remainder was sorbed onto the soils. The presence of RSC in the soils decreased the portion of sorbed Cr(VI) in the soils and therefore lowered the potential remobilization of Cr(VI) from the soils. The results suggested that RSC amendment can be applied to develop a cost-effective method for immobilizing Cr(VI) in polluted soils, thus lowering the environmental risk from Cr(VI) toxicity.  相似文献   

12.
The purpose of this study was to investigate solid-phase distribution, transformation, and bioavailability of Cr in Cr(III) and Cr(VI) contaminated soils. The effects of EDTA treatment on solid-phase distribution of Cr in soils were also examined. The results show that Cr in both initially Cr(III)- and Cr(VI)-contaminated soils was mainly present in the organic matter bound fraction. Chromium had similar solid-phase distribution and similar overall binding intensity in both Cr(III)- and Cr(VI)-contaminated soils after a growing season. Transformation between Cr(III) and Cr(VI) took place in both Cr(III)- and Cr(VI)-treated soils. Chromium in the Cr(III)-contaminated soils was mostly present as Cr(III), while Cr in Cr(VI)-treated soils was mainly transformed into Cr(III). About 2% of Cr in native non-treated soils was found as Cr(VI). EDTA treatment increased Cr in soluble and exchangeable fraction in Cr(III)-treated soils. In both Cr(III)- and Cr(VI)-contaminated soils, Cr in oxide bound and organic matter bound  相似文献   

13.
Speciation of Cr(III)/Cr(VI) from water using olive pomace (OP) was improved by partial pyrolysis of OP. The sorbents were characterized by physicochemical techniques. Sorption of Cr(III) on raw and partially pyrolyzed OP sorbents followed Freundlich isotherm and second-order rate kinetics. OP pyrolyzed at 150 °C (sorbent OP-150) exhibited maximum sorption capacity, favorability and the lowest sorption energy. Sorption was exothermic and spontaneous for the raw-OP and OP pyrolyzed at 100 or 150 °C; but endothermic and non-spontaneous for OP pyrolyzed at 200, 250, 300 or 400 °C. A speciation method of chromium was proposed, in which Cr(III) was selectively retained at pH 3 on sorbent OP-150; while total Cr was determined after reduction of Cr(VI). The method was selective with a detection limit for Cr(III) of 1.58 μg L−1. The method was applied on natural and industrial waters (recoveries >97.7%, RSD’s <9%) and on tobacco leaves certified reference material (INCT-PVTL-6).  相似文献   

14.
Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherms were used to model the adsorption equilibrium data and the system followed all the three isotherms. The adsorption capacity of the biosorbent was found to be 76.3 mg g(-1), which is higher or comparable to the adsorption capacity of various adsorbents reported in literature. Kinetic studies showed that the adsorption obeyed second order and Elovich model. Thermodynamic parameters such as delta G0, delta H0 and delta S0 were evaluated, indicating that the overall adsorption process was endothermic and spontaneous. Effects of foreign anions were also examined. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent.  相似文献   

15.
A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.  相似文献   

16.
Aims: To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Methods and Results: Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T‐RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Conclusions: Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Significance and Impact of Study: Bacterial communities from chromium‐contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied.  相似文献   

17.
Iron hydrous hydro(oxide) has been regarded as an important sorbent for Cr(VI) in soil systems due to its wide distribution. However, many factors, such as phosphate (P), organic ligands, and light sources, could influence Cr(VI) retention by the soil components. The existence of inorganic or organic ligands not only competes with solution Cr(VI) for surface sites, but also results in releasing sorbed Cr(VI). Although organic matter can reduce Cr(VI) to less toxic Cr(III), the reduction rate is extremely slow. The objective of this study was to evaluate the influence of P on Cr(VI) sorption by goethite. The reduction of Cr(VI) by N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) and goethite under different intensity of light was also investigated. Competitive sorption experiment indicated that P had lower inhibition of Cr(VI) sorption when the initial Cr(VI) concentration was higher than P. Goethite suspensions could catalyze Cr(VI) reduction under growth chamber light. Goethite accompanied with light could also accelerate Cr(VI) reduction by HEDTA. This phenomenon could be evidenced by the formation of Cr(III) and decreasing desorption of retained Cr(VI) by P.  相似文献   

18.
Abstract

The removal of hexavalent chromium from aqueous solution using grape stalks wastes encapsulated in calcium alginate (GS–CA) beads was investigated. Cr(VI) sorption kinetics were evaluated as a function of chromium initial concentration and grape stalks (GS) content in the calcium alginate (CA) beads. The process follows pseudo second-order kinetics. Transport properties of hexavalent chromium on GS–CA beads was characterised by calculating chromium diffusion coefficient using the Linear Absorption Model (LAM). Langmuir isotherms, at pH 3.0 were used to describe sorption equilibrium data as a function of GS percentage in the CAbeads. Maximum uptake obtained was 86.42 mmol of Cr(VI) per L of wet sorbent volume. Results indicated that both kinetic and equilibrium models describe adequately the adsorption process.  相似文献   

19.
This study reports health risk assessment of PM1-bound carcinogenic hexavalent chromium [Cr(VI)] from central part of Indo-Gangetic plain (IGP) (PM1: particulate matter with aerodynamic diameter ≤1µm). Cr(VI) concentration has been estimated utilizing spectrophotometer with a modified novel method. Average ratio of Cr(VI)/CrT was 0.39 ± 0.07 (CrT: Total chromium) in the central IGP (Kanpur). Our study reports that mass fraction of Cr(VI) averaging at 0.39 is ~3 times higher than that assumed conventionally [Cr(VI)/CrT: 1/7]. Cancer risk assessment has been performed by assessing excess cancer risk (ECR) for the Cr(VI). ECR determined due to Cr(VI) was 57 and 14.3 (in one million) for adults and children, respectively. Our study suggests that risk due to Cr(VI) reported in previous studies were being underestimated by a factor of three. The Cr(VI)/CrT average ratio of 0.39 determined in this study was utilized to calculate risk assessment due to Cr(VI) from other locations in the IGP. Owing to large population of India (~125 million), the cancer risk due to Cr(VI) inhalation itself would become very significant. Thus, future research should focus on metal speciation of PM-bound samples from different locations to better constraint the toxicological risk assessment on a regional-to-global scale.  相似文献   

20.
Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号