首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Liu  JM Phang 《Autophagy》2012,8(9):1407-1409
Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the pathway of proline catabolism, has been identified as a mitochondrial, metabolic tumor suppressor, which is downregulated in a variety of human tumors. However, our recent findings show that PRODH/POX is upregulated by hypoxia in vitro and in vivo. The combination of low glucose and hypoxia produces additive effects on PRODH/POX expression. Both hypoxia and glucose depletion enhance PRODH/POX expression through AMP-activated protein kinase (AMPK) activation to promote tumor cell survival. Nevertheless, the mechanisms underlying PRODH/POX prosurvival functions are different for hypoxia and low-glucose conditions. Glucose depletion with or without hypoxia elevates PRODH/POX and proline utilization to supply ATP for cellular energy needs. Interestingly, under hypoxia PRODH/POX induces protective autophagy by generating reactive oxygen species (ROS). AMPK is the main initiator of stress-triggered autophagy. Thus, PRODH/POX acts as a downstream effector of AMPK in the activation of autophagy under hypoxia. This regulation was confirmed to be independent of the mechanistic target of rapamycin (MTOR) pathway, a major downstream target of AMPK signaling.  相似文献   

2.
Under conditions of nutrient stress, cells switch to a survival mode catabolizing cellular and tissue constituents for energy. Proline metabolism is especially important in nutrient stress because proline is readily available from the breakdown of extracellular matrix (ECM), and the degradation of proline through the proline cycle initiated by proline oxidase (POX), a mitochondrial inner membrane enzyme, can generate ATP. This degradative pathway generates glutamate and α‐ketoglutarate, products that can play an anaplerotic role for the TCA cycle. In addition the proline cycle is in a metabolic interlock with the pentose phosphate pathway providing another bioenergetic mechanism. Herein we have investigated the role of proline metabolism in conditions of nutrient stress in the RKO colorectal cancer cell line. The induction of stress either by glucose withdrawal or by treatment with rapamycin, stimulated degradation of proline and increased POX catalytic activity. Under these conditions POX was responsible, at least in part, for maintenance of ATP levels. Activation of AMP‐activated protein kinase (AMPK), the cellular energy sensor, by 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR), also markedly upregulated POX and increased POX‐dependent ATP levels, further supporting its role during stress. Glucose deprivation increased intracellular proline levels, and expression of POX activated the pentose phosphate pathway. Together, these results suggest that the induction of proline cycle under conditions of nutrient stress may be a mechanism by which cells switch to a catabolic mode for maintaining cellular energy levels. J. Cell. Biochem. 107: 759–768, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

6.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

7.
The epidermal growth factor receptor (EGFR) is amplified or mutated in various human epithelial tumors. Its expression and activation leads to cell proliferation, differentiation, and survival. Consistently, EGFR amplification or expression of EGFR variant 3 (EGFRvIII) is associated with resistance to conventional cancer therapy through activation of pro-survival signaling and DNA-repair mechanisms. EGFR targeting has successfully been exploited as strategy to increase treatment efficacy. Nevertheless, these targeting strategies have only been proven effective in a limited percentage of human tumors.

Recent knowledge indicates that EGFR deregulated tumors display differences in autophagy and dependence on autophagy for growth and survival and the use of autophagy to increase resistance to EGFR-targeting drugs. In this review the dependency on autophagy and its role in mediating resistance to EGFR-targeting agents will be discussed. Considering the current knowledge, autophagy inhibition could provide a novel strategy to enhance therapy efficacy in treatment of EGFR deregulated tumors.  相似文献   


8.
9.
Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the proliferation and migration of rat pulmonary arterial smooth muscle cells (SMCs) under hypoxia, and investigated the underlying mechanism and the relationship with autophagy. Our data showed that hypoxia activated autophagy significantly at 24 hrs. The addition of exogenous apelin decreased the level of autophagy and further inhibited pulmonary arterial SMC (PASMC) proliferation via activating downstream phosphatidylinositol‐3‐kinase (PI3K)/protein kinase B (Akt)/the mammalian target of Rapamycin (mTOR) signal pathways. The inhibition of the apelin receptor (APJ) system by siRNA abolished the inhibitory effect of apelin in PASMCs under hypoxia. This study provides the evidence that exogenous apelin treatment contributes to inhibit the proliferation and migration of PASMCs by regulating the level of autophagy.  相似文献   

10.
MicroRNAs and autophagy play critical roles in cardiac hypoxia/reoxygenation (H/R)‐induced injury. Here, we investigated the function of miR‐21 in regulating autophagy and identified the potential molecular mechanisms involved. To determine the role of miR‐21 in regulating autophagy, H9c2 cells were divided into the following six groups: control group, H/R group, (miR‐21+ H/R) group, (miR‐21‐negative control + H/R) group, (BEZ235+ H/R) group and (miR‐21+ BEZ235+ H/R) group. The cells underwent hypoxia for 1 hr and reoxygenation for 3 hrs. Cell count kit‐8 was used to evaluate cell function and apoptosis was analysed by Western blotting. Western blotting and transmission electron microscopy were used to investigate autophagy. We found that miR‐21 expression was down‐regulated, and autophagy was remarkably increased in H9c2 cells during H/R injury. Overexpression of miR‐21 with a miR‐21 precursor significantly inhibited autophagic activity and decreased apoptosis, accompanied by the activation of the AKT/mTOR pathway. In addition, treatment with BEZ235, a novel dual Akt/mTOR inhibitor, resulted in a significant increase in autophagy and apoptosis. However, we found that miR‐21‐mediated inhibition of apoptosis and autophagy was partly independent of Akt/mTOR activation, as demonstrated in cells treated with both miR‐21 and BEZ235. We showed that miR‐21 could inhibit H/R‐induced autophagy and apoptosis, which may be at least partially mediated by the Akt/mTOR signalling pathway.  相似文献   

11.
Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.  相似文献   

12.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth, proline content and activity of proline and IAA oxidases of the cultured tissues were determined at the end of 0, 2, 4, and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing hydroxyproline and NaCl showed increased dry weight and proline content as compared to NaCl stressed calli. The levels of proline and IAA oxidases were also low in the hydroxyproline resistant calli.  相似文献   

13.
14.
In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, trophoblasts invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. Here, we showed that autophagy, an intracellular bulk degradation system, occurred in extravillous trophoblast (EVT) cells under hypoxia in vitro and in vivo. An enhancement of autophagy was observed in EVTs in early placental tissues, which suffer from physiological hypoxia. The invasion and vascular remodeling under hypoxia were significantly reduced in autophagy-deficient EVT cells compared with wild-type EVT cells. Interestingly, soluble endoglin (sENG), which increased in sera in preeclamptic cases, suppressed EVT invasion by inhibiting autophagy. The sENG-inhibited EVT invasion was recovered by TGFB1 treatment in a dose-dependent manner. A high dose of sENG inhibited the vascular construction by EVT cells and human umbilical vein endothelial cells (HUVECs), meanwhile a low dose of sENG inhibited the replacement of HUVECs by EVT cells. A protein selectively degraded by autophagy, SQSTM1, accumulated in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy. This is the first report showing that impaired autophagy in EVT contributes to the pathophysiology of preeclampsia.  相似文献   

15.
In this article, we report the effects of acute administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.7 micromol/kg (complex III) and trans-[RuCl(2)(i-dinic)(4)]Cl (i-dinic=3,4-pyridinedicarboxylic acid) 180.7 micromol/kg (complex IV) on succinate dehydrogenase (SDH) and cytochrome oxidase (COX) activities in brain (hippocampus, striatum and cerebral cortex), heart, skeletal muscle, liver and kidney of rats. Our results showed that complex I inhibited SDH activity in hippocampus, cerebral cortex, heart and liver; and inhibited COX in heart and kidney. Complex II inhibited SDH in heart and hippocampus; COX was inhibited in hippocampus, heart, liver and kidney. SDH activity was inhibited by complex III in heart, muscle, liver and kidney. However, COX activity was increased in hippocampus, striatum, cerebral cortex and kidney. Complex IV inhibited SDH activity in muscle and liver; COX activity was inhibited in kidney and increased in hippocampus, striatum and cerebral cortex. In a general manner, the complexes tested in this work decrease the activities of SDH and COX in heart, skeletal muscle, liver and kidney. In brain, complexes I and II were shown to be inhibitors and complexes III and IV activators of these enzymes. In vitro studies showed that the ruthenium complexes III and IV did not alter COX activity in kidney, but activated the enzyme in hippocampus, striatum and cerebral cortex, suggesting that these complexes present a direct action on COX in brain.  相似文献   

16.
Maturing maize kernels are a rich source of cytokinins and cytokinin oxidase/dehydrogenase activity, but the relationship between kernel development, cytokinin levels, the induction of cytokinin oxidase/dehydrogenase and the control of cell division is not known. Using polyclonal antibodies raised against recombinant maize cytokinin oxidase/dehydrogenase, we investigated the appearance of cytokinin oxidase/dehydrogenase (ZmCKX1) in both hybrid and inbred maize kernels as a function of time after pollination. Cytokinin oxidase/dehydrogenase was detected by five days after pollination (5 DAP) in a hybrid line, but significantly later in inbred lines. The bulk of the cytokinin oxidase/dehydrogenase detected was associated with the embryo and placental/chalazal region of the kernels rather than with the endosperm. We identified additional maize sequences in the database that appear to encode cytokinin oxidase/dehydrogenase gene family members and correspond closely with a subset of the ten cytokinin oxidase/dehydrogenase genes identified in the rice genome. Gene expression of Zmckx1 was examined by RT-PCR in immature kernels and compared with that of three putative maize cytokinin oxidase/dehydrogenase homologs. We conclude that the manipulation of kernel cytokinin levels to increase endosperm cell division will require a more detailed understanding of specific expression patterns and localization of multiple cytokinin oxidase/dehydrogenases within kernels.  相似文献   

17.
Cadmium is known as to be a potent pulmonary carcinogen to human beings and to induce prostate tumor. The sequestration of cadmium, an extremely toxic element to living cells, which is performed by biological ligands such as amino acids, peptides, proteins or enzymes is important to minimize its participation in such deleterious processes. The synthesis of metallothionein is induced by a wide range of metals, in which cadmium is a particularly potent inducer. This protein is usually associated with cadmium exposure in man. Because metallothioneins may act as a detoxification agent for cadmium and chelation involves sulfur donor atoms, we administered only cadmium, cysteine, or methionine to rats and also each of these S-amino acids together with cadmium and measured the production of superoxide radicals derived from the conversion of xanthine dehydrogenase to xanthine oxidase. It could be seen in this work that the presence of cadmium enhances this conversion. However, its inoculation with cysteine or methionine almost completely diminishes this effect and this can be the result of the fact that these amino acids complex Cd(II). Thus, these compounds can be a model of the action of metallothionein, removing cadmium from circulation and preventing its deleterious effect.  相似文献   

18.
Cytokinin oxidase/dehydrogenase (CKO) is a flavoenzyme, which irreversibly degrades the plant hormones cytokinins and thereby participates in their homeostasis. Several synthetic cytokinins including urea derivatives are known CKO inhibitors but structural data explaining enzyme–inhibitor interactions are lacking. Thus, an inhibitory study with numerous urea derivatives was undertaken using the maize enzyme (ZmCKO1) and the crystal structure of ZmCKO1 in a complex with N-(2-chloro-pyridin-4-yl)-N′-phenylurea (CPPU) was solved. CPPU binds in a planar conformation and competes for the same binding site with natural substrates like N6-(2-isopentenyl)adenine (iP) and zeatin (Z). Nitrogens at the urea backbone are hydrogen bonded to the putative active site base Asp169. Subsequently, site-directed mutagenesis of L492 and E381 residues involved in the inhibitor binding was performed. The crystal structures of L492A mutant in a complex with CPPU and N-(2-chloro-pyridin-4-yl)-N′-benzylurea (CPBU) were solved and confirm the importance of a stacking interaction between the 2-chloro-4-pyridinyl ring of the inhibitor and the isoalloxazine ring of the FAD cofactor. Amino derivatives like N-(2-amino-pyridin-4-yl)-N′-phenylurea (APPU) inhibited ZmCKO1 more efficiently than CPPU, as opposed to the inhibition of E381A/S mutants, emphasizing the importance of this residue for inhibitor binding. As highly specific CKO inhibitors without undesired side effects are of major interest for physiological studies, all studied compounds were further analyzed for cytokinin activity in the Amaranthus bioassay and for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4. By contrast to CPPU itself, APPU and several benzylureas bind only negligibly to the receptors and exhibit weak cytokinin activity.  相似文献   

19.
《Autophagy》2013,9(2):273-276
Poly(ADP-ribose) polymerase-1 (PARP-1), activated by DNA strand breaks, participates in the DNA repair process physiologically. Excessive activation of PARP-1 mediates necrotic cell death under the status of oxidative stress and DNA damage. However, it remains elusive whether and how PARP-1 activation is involved in autophagy and what is the function of PARP-1-mediated autophagy under oxidative stress and DNA damage. We recently demonstrate that hydrogen peroxide (H2O2) induces autophagy through a novel autophagy signalling mechanism linking PARP-1 activation to the LKB1-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. Furthermore, PARP-1-mediated autophagy plays a cytoprotective role in H2O2-induced necrotic cell death as suppression of autophagy greatly sensitizes H2O2-induced cell death. Our study thus identifies a novel function of PARP-1 in mediating autophagy and it appears that PAPR-1 possesses a dual role in modulating necrosis and autophagy under oxidative stress and DNA damage: on the one hand, overactivation of PARP-1 leads to ATP depletion and necrotic cell death; on the other hand, PARP-1 activation promotes autophagy via the LKB1-AMPK-mTOR pathway to enhance cell survival. The cellular decision of life or death depends on the balance between autophagy and necrosis mediated by these two distinct pathways.  相似文献   

20.
The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin-containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号