首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements.  相似文献   

2.
Wounds are common clinical entities of life which may be subacute or acute. Wound healing is a complex biochemical process where the cell structures are restored to normalcy, which depend on cell proliferation and migration, basically fibroblast cell. The present investigation was undertaken to evaluate the healing efficacy of red pigment isolated from marine isolate Vibrio sps on experimental wounds in albino rats. The red pigment was applied topically, twice daily for 14 days. Treatment with framycetin ointment was used as reference control. The red pigment treated group showed faster reduction in wound area in comparison with control and framycetin ointment treated groups. In conclusion, red pigment possesses significant healing potential in wounds and has a positive influence on the different phases of wound repair.  相似文献   

3.
4.
Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed.  相似文献   

5.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   

6.
Trace element involvement in wounds left to heal by secondary intention needs clarification. We have previously reported faster healing of wounds following acute surgery compared with elective excision of pilonidal sinus disease. The effect of topical zinc on the closure of the excisional wounds was mediocre compared with placebo. In contrast, parenteral zinc, copper, and selenium combined appear effective for wound healing in humans. We have investigated zinc, copper, and selenium with respect to (a) impact of acute versus chronic pilonidal sinus and (b) regional concentrations within granulating wounds treated topically with placebo or zinc in 42 (33 males) pilonidal disease patients. Baseline serum and skin concentrations of copper correlated (r S?=?0.351, p?=?0.033, n?=?37), but not of zinc or selenium. Patients with abscesses had elevated serum C-reactive protein (CRP) and copper levels (+29 %; p?<?0.001) compared with the elective patients consistent with the strong correlation between serum copper and CRP (r S?=?0.715, p?<?0.0005, n?=?41). Seven days after elective surgery, serum CRP and copper levels were elevated (p?=?0.010) versus preoperative values. The copper concentration in wound edges was higher than in periwound skin (p?<?0.0005) and wound base (p?=?0.010). Selenium levels were increased in wound edge compared to wound base (p?=?0.003). Topical zinc oxide treatment doubled (p?<?0.050) zinc concentrations in the three tissue localizations without concomitant significant changes of copper or selenium levels. In conclusion, copper and selenium are mobilized to injured sites possibly to enhance host defense and early wound healing mechanisms that are complementary to the necessity of zinc for matrix metalloproteinase activity.  相似文献   

7.
With the advent of aging society, the effects of aging on all aspects of the body are attracting more and more attention. Among them, the increasing incidence of chronic wounds in the elderly not only affects the quality of the elderly’s life significantly, but also brings a heavy medical burden on society. Delayed and poor wound healing increases the possibility of severe infections. To find out a solution for infection and chronic wounds, it is necessary to clarify the specific mechanisms of wound healing and possible intervention targets. Wound healing is a complex physiological process in the human body, which involves the coordinated activation of multiple cell types and signaling pathways. The role of senescent cells in wound healing is causing growing attention in recent years. It was thought that wound healing needs to take a longer time in elder people. In recent years, it has been found that senescent cells promote wound healing. So far, the effects of senescent cells on the efficiency and quality of wound healing and its specific mechanism have not been fully clarified. What is certain is that different types of senescent cells and even different subtypes of the same senescent cells play different roles in fast and chronic wound healing. It is not only the heterogeneity of the senescent cell itself, but also the difference in the surrounding microenvironment that determines the effect of senescent cells on wound healing. The study of its mechanism is helpful to find a way to promote the healing of wounds. It is worth noting that senescent cells themselves may also induce poor wound prognosis, such as chronic wounds, inflammation and decreased anti-infection ability. Therefore, the ideal treatment strategy to apply senescent cells will be a comprehensive plan that maximizes the efficiency and quality of wound healing, while minimizing the risk of senescent cells itself becoming an inducement for chronic wounds.  相似文献   

8.
EGF and TGF-alpha in wound healing and repair   总被引:8,自引:0,他引:8  
Wound healing is a localized process which involves inflammation, wound cell migration and mitosis, neovascularization, and regeneration of the extracellular matrix. Recent data suggest the actions of wound cells may be regulated by local production of peptide growth factors which influence wound cells through autocrine and paracrine mechanisms. Two peptide growth factors which may play important roles in normal wound healing in tissues such as skin, cornea, and gastrointestinal tract are the structurally related peptides epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). EGF/TGF-alpha receptors are expressed by many types of cells including skin keratinocytes, fibroblasts, vascular endothelial cells, and epithelial cells of the GI tract. In addition, EGF or TGF-alpha are synthesized by several cells involved in wound healing including platelets, keratinocytes, and activated macrophages. Healing of a variety of wounds in animals and patients was enhanced by treatment with EGF or TGF-alpha. Epidermal regeneration of partial thickness burns on pigs or dermatome wounds on patients was accelerated with topical application of EGF or TGF-alpha, and EGF treatment accelerated healing of gastroduodenal ulcers. EGF also increased tensile strength of skin incisions in rats and corneal incisions in rabbits, cats, and primates. Additional research is needed to better define the roles of EGF, TGF-alpha and their receptor in normal wound healing, to determine if alterations have occurred in the EGF/TGF-alpha system in chronic wounds, and optimize vehicles for effective delivery of peptide growth factors to wounds.  相似文献   

9.
Wound healing in the integument of the sea cucumber, Thyone briareus, was studied for up to 50 days after inflicting wide excisional wounds and for 14 days after producing incisional wounds. Rapid re-epithelialization of the wound was effected by the migration of epidermal cells and pigment cells from the periphery of the wound margin. This occurred without apparent evidence of concomitant mitotic activity. Dermal wound healing was completed by the fourteenth day in the incision wounds but occurred very slowly in the broad excision wounds. Morula cells seem to be involved in both epidermal and dermal wound healing, although their precise role is unknown. In excisional wounds the integument was never completely restored to its normal appearance during 50 days of observation.  相似文献   

10.

Background

Wound healing involves the integration of complex biological processes. Several studies examined numerous approaches to enhance wound healing and to minimize its related morbidity. Both chitosan and mesenchymal stem cells (MSCs) were used in treating skin wounds. The aim of the current work was to compare MSCs versus chitosan in wound healing, evaluate the most efficient route of administration of MSCs, either intradermal or systemic injection, and elicit the mechanisms inducing epidermal and dermal cell regeneration using histological, immunohistochemical and fluorescent techniques.

Material and Methods

Forty adult male Sprague Dawley albino rats were divided into four equal groups (ten rats in each group): control group (Group I); full thickness surgical skin wound model, Group II: Wound and chitosan gel. Group III: Wound treated with systemic injection of MSCs and Group IV: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 3, 5, 10 and 15 for gross morphological evaluation and on day 10 and 15 for histological, immunohistochemical and fluorescent studies.

Results

Chitosan was proved to promote wound healing more than the control group but none of their wound reached complete closure. Better and faster healing of wounds in MSCs treated groups were manifested more than the control or chitosan treated groups. It was found that the intradermal route of administration of stem cells enhanced the rate of healing of skin wounds better than the systemic administration to the extent that, by the end of the fifteenth day of the experiment, the wounds were completely healed in all rats of this group. Histologically, the wound areas of group IV were hardly demarcated from the adjacent normal skin and showed complete regeneration of the epidermis, dermis, hypodermis and underlying muscle fibers. Collagen fibers were arranged in many directions, with significant increase in their area percent, surrounding fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas more than in other groups.

Conclusion

MSCs enhanced the healing process of wound closure more than chitosan gel treatment. Furthermore, MSCs injected intradermally, were more efficient in accelerating wound healing than any other mode of treatment.  相似文献   

11.
Introduction: Defects in tissue repair or wound healing pose a clinical, economic and social problem worldwide. Despite decades of studies, there have been few effective therapeutic treatments.

Areas covered: We discuss the possible reasons for why growth factor therapy did not succeed. We point out the lack of human disorder-relevant animal models as another blockade for therapeutic development. We summarize the recent discovery of secreted heat shock protein-90 (Hsp90) as a novel wound healing agent.

Expert commentary: Wound healing is a highly complex and multistep process that requires participations of many cell types, extracellular matrices and soluble molecules to work together in a spatial and temporal fashion within the wound microenvironment. The time that wounds remain open directly correlates with the clinical mortality associated with wounds. This time urgency makes the healing process impossible to regenerate back to the unwounded stage, rather forces it to take many shortcuts in order to protect life. Therefore, for therapeutic purpose, it is crucial to identify so-called ‘driver genes’ for the life-saving phase of wound closure. Keratinocyte-secreted Hsp90α was discovered in 2007 and has shown the promise by overcoming several key hurdles that have blocked the effectiveness of growth factors during wound healing.  相似文献   


12.
Wound healing in diabetes is a complex process, characterised by a chronic inflammation phase. The exact mechanism by which this occurs is not fully understood, and whilst several treatments for healing diabetic wounds exist, very little research has been conducted towards the causes of the extended inflammation phase. We describe a mathematical model which offers a possible explanation for diabetic wound healing in terms of the distribution of macrophage phenotypes being altered in the diabetic patient compared to normal wound repair. As a consequence of this, we put forward a suggestion for treatment based on rectifying the macrophage phenotype imbalance.  相似文献   

13.
Maggot therapy is a simple and highly successful method for healing of infected and necrotic wounds. The increasing evidences indicate that Maggot excretions/secretions (ES) plays important roles in the wounds healing process. But the precise molecular mechanisms remain undefined. Herein, we investigated if ES induced cell migration during wound healing process using microvascular endothelial cells (HMEC-1) as model, and this effect was associated with the activation of AKT1 and ERK1/2. Wound healing and transwell migration assays were performed to study the effects of ES on HMEC-1 cell migration. Our data showed that ES significantly induced HMEC-1 cell migration in both wound healing and transwell assays, and time-dependently (P < 0.05) activated AKT1, but not ERK1/2. Moreover LY294002 (a PI3K inhibitor) partially attenuated (P < 0.05) ES-induced cell migration in wound healing assay while completely inhibited (P < 0.05) ES-induced AKT1 activation. These findings demonstrate that ES directly induces HMEC-1 cell migration and this event is partially mediated by the activation of AKT1.  相似文献   

14.
Background

Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing.

Results

The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 μg/μl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed β-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 μg/μl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing.

Conclusions

The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating β-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application.

  相似文献   

15.
Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3 -/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3 -/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3 -/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3 -/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3 -/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3 -/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3 -/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3 -/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3 -/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression of wound closure.  相似文献   

16.
Wound healing in the skin is a complex biological process in which numerous types of cells, cytokines, growth factors, proteases and extracellular matrix components act in concert to restore the integrity of injured tissue. Cultivated allogenic human keratinocytes have been used for the treatment of various skin defects like burnwounds, surgical wounds, in exfoliative skin diseases and chronic wounds. A new method for wound healing enhancement in leg ulcers using cultured allogenic keratinocytes suspended in fibrin glue and used in spray technique is introduced. Allogenic keratinocytes are supposed to enhance granulation tissue production and to stimulate reepithelisation due to their release of growth factors and thus are able to recreate an active wound. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
BackgroundThe occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration.HypothesisSIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism.MethodologyThe retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below.ResultsMany SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site.ConclusionsHowever, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.  相似文献   

18.
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.  相似文献   

19.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), has diverse effects in a variety of tissues and cell types, including skin. Since 1,25(OH)2D3 affects both fibroblast and keratinocytes, we evalauated the effect of 1,25(OH)2D3 or wound healing. We investigated the effect of the topically applied 1,25(OH)2D3 or vehicle on the healing of cutaneous wounds in rats in a blinded manner. Wound areas were measured by planimetry technique. Healing was expressed as the percentage of the original wound area that was healed. 1,25(OH)2D3 at concentrations between 5 and 50 ng/day caused a dose-dependent acceleration of healing. Time course and specificity studies indicated that 1,25(OH)2D3 specifically promoted healing between 1–5 days after wounding as compared with vitamin D (0.5 μg/day), which showed no significant improvement over control. Our results suggest that 1,25(OH)2D3 and its analogues may be a new class of compounds that could be developed to enhance wound healing. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号