首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The oxidized low-density lipoprotein (oxLDL)-dependent activation of the lectin-like oxLDL receptor-1 (LOX-1) triggers apoptosis in vascular cells and appears to be involved in atherosclerosis. Autophagy might be an alternate to apoptosis in endothelial cells. The EA.hy926 endothelial cell line has been reported to undergo necrosis under oxLDL stimulation. For this reason, we studied the expression of LOX-1 and its oxLDL-dependent function in EA.hy926 cells under serum starvation. Untreated and oxLDL-treated cells expressed the LOX-1 protein at similar levels 6h after starvation. After 24h without oxLDL and with native LDL (nLDL), statistically significant higher levels were found in LOX-1 than in the oxLDL-treated probes. The oxLDL cultures with low LOX-1 expression displayed stronger features of autophagy than those with nLDL as there were remodelling of actin filaments, disrupture of adherens junctions (immunofluorescence staining), and autophagosomes with the characteristic double membrane at the ultrastructural level. For the advanced oxLDL exposure times (18 and 24 h), autophagic vacuoles/autophagolysosomes were morphologically identified accompanied by a decrease in lysosomes. The autophagosome marker protein MAP LC3-II (Western blotting) was significantly augmented 6 and 18 h after oxLDL treatment compared with cultures treated with nLDL and medium alone. Signs of apoptosis were undetectable in cultures under oxLDL exposure, yet present under staurosporin (apoptosis inducer), i.e. presence of apoptotic bodies and cleaved caspase 3. We conclude that serum starvation upregulates LOX-1 in EA.hy926 cells, whereas the additional oxLDL treatment downregulates the receptor and intensifies autophagy probably by increase in oxidative stress.  相似文献   

2.
Increased levels of low-density lipoproteins are well-established risk factors of endothelial dysfunction and the metabolic syndrome. In this study, we evaluated the effect of native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) on the expression of genes of the renin-angiotensin system (angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT(1)) and their receptors (low-density lipoprotein receptor: LDLR; lectin-like oxLDL receptor: LOX-1; toll-like receptor 4: TLR4) in primary cultures of human umbilical vein endothelial cells. ACE and AT(1) expressions were significantly increased after stimulation with nLDL and oxLDL. OxLDL receptor LOX-1 showed a maximum induction after 7 hours. Increased LOX-1 protein expression in response to oxLDL could be blocked by a LOX-1-specific antibody. TLR4 expression was increased by nLDL and oxLDL as well. We conclude that LDL and oxLDL can activate the renin-angiotensin system and their receptors LDLR, LOX-1, and TLR4 in human endothelial cells. These data suggest a novel link between hypercholesterolemia and hypertension in patients with the metabolic syndrome.  相似文献   

3.
Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.  相似文献   

4.
Oxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role. We used mice with targeted inactivation of the LOX-1 gene to define the role of this receptor in the uptake of oxLDL and in activation of survival pathways. There was no difference in uptake or degradation of 125I-oxLDL in unstimulated macrophages from wild-type and LOX-1 knockout mice and no difference in the rate of clearance of oxLDL from plasma in vivo. However, when expression of LOX-1 was induced with lysophosphatidylcholine, oxLDL uptake and degradation increased 2-fold in wild-type macrophages but did not change in LOX-1 knockout macrophages. Macrophages lacking LOX-1 showed the same stimulation of PKB phosphorylation and enhancement of survival by oxLDL as wild-type cells. These data show that LOX-1 does not alter the uptake of oxLDL in unstimulated macrophages and is not essential for the pro-survival effect of oxLDL in these cells. However, LOX-1 expression is highly inducible by lysophosphatidylcholine and pro-inflammatory cytokines, and if that occurred in macrophages within atheromas, LOX-1 could substantially increase oxLDL uptake by lesion macrophages.  相似文献   

5.
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.  相似文献   

6.
Toll-like receptor 4 (TLR4) is expressed on dendritic cells (DCs), sensing environmental danger molecules that induce their activation and maturation. Recently, we reported a method for the production of therapeutic DCs against melanoma, called tumor antigen-presenting cells (TAPCells), using a heat-shocked allogeneic melanoma cell lysate (TRIMEL) as an activation factor and antigen provider. Since TRIMEL contains endogenous TLR4 ligands, we evaluated the role of TLR4 in TAPCells differentiation by antibody neutralization and the association of a Tlr4 polymorphism (896A/G) (Asp299Gly), determined by PCR–RFLP, with the in vitro activation capacity and the clinical outcome of TAPCells-vaccinated patients. Antibody blocking of monocyte TLR4 inhibited surface expression, determined by flow cytometry, of the major histocompatibility complex class I, CCR7, CD80, CD83 and CD86 on TAPCells, reduced interleukin (IL)-6 and tumor necrosis factor -α gene expression evaluated by qRT-PCR, and also inhibited the TAPCells-mediated interferon-γ (IFN-γ) secretion of melanoma-specific CD8+ T cells determined by ELISpot (p?<?0.01). Moreover, CD8+ T-cell activation capacity was significantly reduced in TAPCells bearing the TLR4 Asp299Gly receptor (p?<?0.05). Finally, TAPCells-vaccinated stage-IV melanoma patients bearing the Tlr4 896G allele showed a shortened post-therapy median survival rate compared with those carrying the Tlr4 896A allele (p?<?0.05; log-rank test). Our results indicate that TLR4 is a key receptor for the tumor lysate-mediated in vitro generation of clinically efficient antigen-presenting cells. Further analysis of patients included in different vaccine protocols is necessary for definitively establishing a role for TLR4 polymorphism in clinical responses.  相似文献   

7.
Reactive oxygen species (ROS) are implicated to play a role in initiating rheumatoid arthritis (RA) pathogenesis. We have investigated the mechanism(s) by which essential redox-active trace metals (RATM) may induce cell proliferation and cell death in rabbit synovial fibroblasts. These fibroblast-like synovial (FLS) cells, which express Toll-like receptor 4 (TLR4), were used as a model system that plays a role in potentially initiating RA through oxidative stress. Potassium peroxychromate (PPC, [Cr5+]), ferrous chloride (FeCl2, [Fe2+]), and cuprous chloride (CuCl, [Cu+]) in the indicated valency states were used as exogenous pro-oxidants that can induce oxidative stress through TLR4 coupled activation that also causes HMGB1 release. We measured the proliferation index (PI) of FLS, and examined the effect of RATM oxidants on apoptosis and autophagy by fluorescence cell-sorting flow cytometry (FC). Cell cycle was analysed by FC and autophagy-related protein expression levels were measured by western blot. Our data showed that as RATM as prooxidants increased intracellular ROS (iROS) that can induce oxidative stress. Whereas iROS increased PI in FLS, these reactive species also protected cells against apoptosis by inducing autophagy. Our results indicate that ROS/TLR4-coupled activation may contribute to the pathogenesis of RA in FLS by induction of autophagy. The signalling pathway by which inflammation and its tissue destructive sequel may occur in RA underlies the need for developing therapeutic agents that can inhibit release of tissue-damaging high mobility group box 1 (HMGB1), cytokines, and possess both trace metal chelating capacity and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   

8.
In this study, we analyzed the effect of endothelin-1 (ET-1) on expression of the lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 LOX-1 and on oxLDL uptake in primary cultures of human umbilical vein endothelial cells (HUVEC). LOX-1 mRNA was quantified by standard-calibrated competitive RT-PCR, LOX-1 protein expression by Western analysis and endothelial oxLDL uptake using DiI-labeled oxLDL. ET-1 induces LOX-1 mRNA expression, reaching its maximum after 1 h (160 +/- 14% of control, 100 nM ET-1, P < 0.05). This increased ET-1-mediated LOX-1 mRNA expression could be inhibited by endothelin receptor B antagonist BQ-788. In addition, ET-1 stimulates LOX-1 protein expression and oxLDL uptake in HUVEC. The augmented oxLDL uptake by ET-1 is mediated by endothelin receptor B, but not by protein kinases. These data support a new pathophysiological mechanism how locally and systemically increased ET-1 levels could promote LOX-1-mediated oxLDL uptake in human endothelial cells and the development and progression of endothelial dysfunction and atherosclerosis.  相似文献   

9.
Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.  相似文献   

10.
Recent studies indicate that Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) can function as the signal of pattern recognition receptors, which play a pivotal role in the pathogenesis of the autoimmune disease. Systemic lupus erythematosus (SLE) is a classic autoimmune disease. Previous reports mainly focused on the potential role of TLRs in regulating the development of SLE, but little is known about the role of CLRs in the progression of SLE. Our previous studies showed that the inflammation-mediated accumulation of myeloid-derived suppressor cells (MDSCs) including granulocytic (G-MDSCs) and monocytic (M-MDSCs) participated in the pathogenesis of lupus. Mice deficient in Card9 (the downstream molecule of CLRs) were more susceptible to colitis-associated cancer via promoting the expansion of MDSCs. Whether the abnormal activation of CLRs regulates the expansion of MDSCs to participate in the pathogenesis of lupus remains unknown. In the present study, the expressions of CLRs were examined in both SLE patients and mouse models, revealing the expression of Dectin3 was positively correlated with SLEDAI. Dectin3 deficiency retarded the lupus-like disease by regulating the expansion and function of MDSCs. The mechanistic analysis revealed that Dectin3 deficiency promoted FoxO1-mediated apoptosis of MDSCs. Syk-Akt1-mediated nuclear transfer of FoxO1 increased in Dectin3-deficient MDSCs. Notedly, the accumulation of M-MDSCs mainly decreased in Dectin3−/− lupus mice, and the nuclear transfer of FoxO1 negatively correlated with the expression of LOX-1 on M-MDSCs. The silencing of FoxO1 expression in Dectin3−/− mice promoted the expansion of LOX-1+ M-MDSCs in vivo, and LOX-1+ M-MDSCs increased the differentiation of Th17 cells. Both LOX-1 expression on M-MDSCs and Dectin3 expression on MDSCs increased in patients with SLE. These data indicated that increased LOX-1+ M-MDSCs were related to the exacerbation of SLE development and might be potential target cells for the treatment of SLE.Subject terms: Cell signalling, Autoimmunity, Cell death and immune response  相似文献   

11.
Signals from the T cell immunoglobulin and mucin-domain (TIM)-containing molecules have been demonstrated to be involved in regulating the progress of carcinoma. However, the expression and anatomical distribution of TIMs in Langerhans cell sarcoma (LCS), which is a rare malignancy derived from dendritic cells of the epidermis, has yet to be determined. In this study, the expression of TIM-1, TIM-3 and TIM-4 in LCS samples were detected by immunohistochemistry. Our results showed that these three molecules were found in LCS sections. At the cellular level, these molecules were found on the cell membrane and in the cytoplasm. Immunofluorescence double-staining demonstrated that these TIMs were co-expressed with Langerin, a potential biomarker for detecting LCS. In addition, TIM-1 was also expressed on CD68+ macrophages and CK-18+ epithelial cells, while TIM-3 and TIM-4 were expressed on all cell types investigated, including CD3+T cells, CD68+ macrophages, CD11c+ dendritic cells, CD16+ NK Cells, CD31+ endothelial cells and CK-18+ epithelial cells. Interestingly, TIMs were also co-expressed with some members of the B7 superfamily, including B7-H1, B7-H3 and B7-H4 on sarcoma cells. Our results clearly showed the characteristic expression and anatomical distribution of TIMs in LCS, and a clear understanding of their functional roles may further elucidate the pathogenesis of this carcinoma and potentially contribute to the development of novel immunotherapeutic strategies.  相似文献   

12.
Vascular smooth muscle cell (VSMC) foam cell formation is an important hallmark, especially in advanced atherosclerosis lesions. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) promotes foam cell formation by promoting intracellular cholesteryl ester synthesis. The present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the Toll-like receptor 4 (TLR4)-mediated inflammation, and ultimately promotes VSMC foam cell formation. Wild-type, ApoE−/−, TLR4−/− and ACAT1−/− mice on a C57BL/6J background were used. Increased TLR4, proinflammatory cytokines and ACAT1 were observed in high-fat (HF) diet-induced atherosclerotic plaque formation and in oxLDL-stimulated VSMCs. ACAT1 deficiency impeded the HF diet-induced atherosclerotic plaque formation and impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. TLR4 deficiency inhibited the upregulation of myeloid-differentiating factor 88 (MyD88), nuclear factor-κB (NF-κB), proinflammatory cytokines and ACAT1, and eventually attenuated the HF diet-induced atherosclerotic plaque formation and suppressed the oxLDL-induced VSMC foam cell formation. Knockdown of MyD88 and NF-κB, respectively, impaired the TLR4-manipulated VSMC foam cell formation in response to oxLDL. Rosiglitazone (RSG) attenuated HF diet-induced atherosclerotic plaque formation in ApoE−/− mice, accompanied by reduced expression of TLR4, proinflammatory cytokines and ACAT1 accordingly. Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppressed oxLDL-induced VSMC foam cell formation and inhibited the expression of TLR4, MyD88, NF-κB, proinflammatory cytokines and ACAT1, whereas inhibition of PPARγ exerted the opposite effect. TLR4−/− mice and VSMCs showed impaired atherosclerotic plaque formation and foam cell formation, and displayed no response to PPARγ manipulation. In conclusion, our data showed that oxLDL stimulation can activate the TLR4/MyD88/NF-κB inflammatory signaling pathway in VSMCs, which in turn upregulates the ACAT1 expression and finally promotes VSMC foam cell formation.Atherosclerosis remains the major cause of deaths worldwide, with deteriorated clinical consequence of cardiovascular diseases including myocardial infarction and stroke.1 In 2008, for example, 17.3 million deaths were caused by cardiovascular diseases, and this number will increase to 23.3 million by 2030.2 Therefore, a better understanding of mechanisms involved in atherosclerosis may advance the development of comprehensive therapeutic regimens.Foam cell formation from macrophages or vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is an intracellular enzyme that converts free cholesterol into cholesteryl esters for storage in lipid droplets, and promotes foam cell formation in atherosclerotic lesions.3, 4, 5 ACAT1 activity is present in a variety of cells and tissues, including the macrophages, neurons, cardiomyocytes, VSMCs, mesothelial cells, alveolar and intestinal epithelial cells and hepatocytes.6 In macrophages, the involvement of ACAT1 in foam cell formation has been demonstrated by studies, and multiple molecular mechanisms have been put forward. A well-accepted mechanism is that inflammation increases the expression of ACAT1, promotes the intracellular lipid accumulation and ultimately leads to foam cell formation.7 However, in contrast, the mechanisms underlying VSMC foam cell formation, especially the role of ACAT1 in this process, remain largely unelucidated.It is widely accepted that atherosclerosis involves chronic inflammatory reaction.8 Toll-like receptor 4 (TLR4), one intensively investigated member of the TLR family, has a critical role in initiating inflammation, and participates in VSMC activation.9, 10 Lipopolysaccharide (LPS) is a TLR4-specific ligand that can trigger TLR4-mediated inflammation. A previous study showed that Chlamydia pneumoniae, which contains LPS in its outer membrane, promotes low-density lipoprotein-induced macrophage-derived foam cell formation via upregulation of the expression of ACAT1.11 This further enhanced the association between inflammation and intracellular lipid disorder. However, considering that VSMCs in normal conditions do not have inflammatory properties similar to macrophages, it is unclear whether the TLR4-mediated inflammatory mechanism is also involved in the regulation of ACAT1 in VSMC foam cell formation. Herein, the present study tests the hypothesis that oxidized low-density lipoprotein (oxLDL) increases the ACAT1 expression by activating the TLR4-mediated inflammation, and ultimately promotes VSMC foam cell formation.  相似文献   

13.
The oxidative changes of lipids in cartilage proceed with ageing and with the grade of osteoarthritis. To clarify the role of oxidatively modified lipids in articular cartilage in osteoarthritis, here, we investigated lectin-like oxidized LDL receptor (LOX-1) in rat cultured articular chondrocytes. LOX-1 expression was detectable in basal culture condition and enhanced by the treatment of oxidized LDL and interleukin-1beta. DiI-labeled oxidized LDL was bound and ingested by chondrocytes via LOX-1. Oxidized LDL dose-dependently reduced chondrocyte viability, inducing non-apoptotic cell death, which was again suppressed by anti-LOX-1 antibody treatment. Oxidized LDL reduced the amount of phosphorylated Akt, a substrate of PI3 kinase via LOX-1. Consistently, the PI3 kinase inhibitor, LY294002, decreased cell viability dose-dependently, and the PI3 kinase activator, IGF-I, reversed the effect of oxidized LDL on the cell death. LOX-1 might be involved in the pathogenesis of osteoarthritis, inducing chondrocyte death through PI3 kinase/Akt pathway.  相似文献   

14.
Summary Three-dimensional epithelial culture models are widely used to emulate a more physiologically relevant microenvironment for the study of genes and signaling pathways. Prostate epithelial cells can grow into solid cell masses or acinus-like spheroids in Matrigel. To test if the ability to form acinus-like spheroids in Matrigel is dependent on how undifferentiated a cell is or whether it is tumor or nontumor, we established six novel epithelial cell lines. Primary prostate epithelial cells were immortalized using HPV16 E6 gene transduction and were named Shmac 2, 3, and 6 (nontumor); Shmac 4, Shmac 5, and P4E6 (tumor). All cell lines were phenotyped in monolayer culture, and their ability to form acinus-like spheroids in Matrigel investigated. The cell lines exhibited a wide range of population doubling times and all showed an intermediate phenotype in nonolayer culture (luminalCK+/basalCK+/CD44+/PSA+/AR). Only Shmac 5 cells formed acinus-like spheroids when cultured in Matrigel. Co-culture of the spheroids with fibroblasts advanced differentiation by inducing androgen receptor expression and epithelial polarization. Our findings indicate that tumor cells can form acinus-like spheroids in Matrigel.  相似文献   

15.
Vein grafts interposed into arteries are susceptible to the development of atherosclerosis due to rapid increases in blood pressure. This process is accelerated in patients with hyperlipidemia. The molecular mechanism underlying this process is unknown. In this study, quiescent rat vascular smooth muscle cells (VSMCs) were treated in vitro with mechanical stretch stress (10% elongation) with and without oxLDL (25 μg/ml) in the presence and absence of simvastatin (2.5 μmol/L). The results demonstrate that stretch stress and oxLDL can each induce activation of ERK1/2 and Ki-67 expression in VSMCs, but the peak levels of ERK activation and Ki-67 expression were observed in groups subjected to both stretch stress and oxLDL. Simvastatin was found to inhibit increased ERK activation and Ki-67 expression in VSMCs subjected to stretch stress with or without oxLDL. Mechanically, simvastatin was also found to inhibit increased expression of LOX-1 (a receptor of oxLDL) in VSMCs subjected to stretch stress with or without oxLDL. Knockdown of LOX-1 via small interfering RNAs (siRNA-LOX-1) resulted in obvious inhibition of ERK activation in VSMCs subjected to stretch stress with and without oxLDL. These results suggest that combined stretch stress and oxLDL can additively promote the activation of ERK1/2 leading to accelerated proliferation of VSMCs (e.g. increased Ki-67 expression) via LOX-1 signal pathway. This was found to be partially inhibited by simvastatin. These results may provide important data for the treatment and prevention of hypertension with or without hyperlipidemia.  相似文献   

16.
Dendritic cells (DCs) induce innate immune responses by recognizing bacterial LPS through TLR4 receptor complexes. In this study, we compared gene expression profiles of TLR4 knockout (TLR4neg) DCs and wild type (TLR4pos) DCs after stimulating with LPS. We found that the expression of various inflammatory genes by LPS were TLR4-independent. Among them, interleukin 1 receptor antagonist (IL-1rn) was of particular interest since IL-1rn is a potent natural inhibitor of proinflammatory IL-1. Using RT-PCR, real-time PCR, immunoblotting and ELISA, we demonstrated that IL-1rn was induced by DCs stimulated with LPS in the absence of TLR4. 2-Aminopurine, a pharmacological PKR inhibitor, completely abrogated LPS-induced expression of IL-1rn in TLR4neg DCs, suggesting that LPS-induced TLR4-independent expression of IL-1rn might be mediated by PKR pathways. Considering that IL-1rn is a physiological inhibitor of IL-1, TLR4-independent and PKR-dependent pathways might be crucial in counter-balancing proinflammatory effector functions of DCs resulted from TLR4-dependent activation by LPS.  相似文献   

17.
Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.  相似文献   

18.
19.
20.
Atherosclerosis is an inflammatory disease in which oxidized low-density lipoprotein (oxLDL) plays important roles. Scavenger receptors (SR) CD36, SR-A, and LOX-1 uptake over 90% of the oxLDL leading to foam cell formation and secretion of inflammatory cytokines. To investigate whether the interindividual differences in macrophage SR gene expression could determine the inflammatory variability in response to oxLDL, we quantified the gene and protein expression of SR and inflammatory molecules from macrophages isolated from 18 volunteer subjects and incubated with oxLDL for 1, 3, 6, and 18 h. The individual gene expression profile of the studied SR at 1 h of incubation was highly variable, showing a wide fold-change range: CD36: -3.57-4.22, SR-A: -5.0-4.43, and LOX-1: -1.56-75.32. We identified subjects as high and low responders depending on whether their SR gene expression was above or below the median, showing a different inflammation response pattern. CD36 and LOX-1 gene expression correlated positively with IL-1beta; SR-A correlated negatively with IL-8 and positively with PPARgamma and NF-kappaBIotaA. These results were confirmed in the same subjects 3 mo after the first sampling. Furthermore, a negative correlation existed between CD36 and SR-A at protein level after 18 h of oxLDL incubation (R = -0.926, p = 0.024). These data would suggest that the type of SR could determine the macrophage activation: more proinflammatory when associated to CD36 and LOX-1 than when associated with SR-A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号