首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  相似文献   

5.
Hui Qian  Xiaojuan Chao 《Autophagy》2018,14(4):563-566
Macroautophagy/autophagy plays a dual role in cancer depending on the stage of tumorigenesis. Autophagy prevents tumor initiation by suppressing chronic tissue damage, inflammation, accumulation of damaged organelles and genome instability. Autophagy can also sustain tumor metabolism and provide nutrients for tumor growth and survival via nutrient recycling. Moreover, autophagy is required for benign tumors to progress to malignant tumors. Emerging evidence indicates that autophagy or mitophagy can inactivate tumor suppressors such as TP53/TRP53/p53 to promote tumor progression once carcinogenesis has been initiated.  相似文献   

6.
The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel antimicrotubule drug, ABT-751, in a tumor protein p53 ( TP53)-deficient hepatocellular carcinoma-derived Hep-3B cells. A series of in vitro assays indicated that ABT-751 caused the disruption of the mitotic spindle structure, collapse of mitochondrial membrane potential, generation of reactive oxygen species, DNA damage, G 2/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Hep-3B cells accompanied by alteration of the expression levels of several DNA damage checkpoint proteins and cell cycle regulators. Subsequently, ABT-751 triggered apoptosis along with markedly upregulated several proapoptotic proteins involving in extrinsic, intrinsic, and caspase-mediated apoptotic pathways. A pan-caspase inhibitor suppressed ABT-751-induced apoptosis. ABT-751 also induced autophagy soon after the occurrence of apoptosis through the suppression of AKT serine/threonine kinase/mechanistic target of rapamycin signaling pathway. Exogenous expression of the TP53 gene significantly incurred both apoptosis and autophagy in Hep-3B cells. Pharmacological inhibition of autophagosome (early autophagy) but not autolysosome (late autophagy) enhanced ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. Our study provided a new strategy to augment ABT-751-induced apoptosis in TP53-deficient cells.  相似文献   

7.
8.
9.
The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.  相似文献   

10.
11.
12.
Nuclear and mitochondrial apoptotic pathways of p53   总被引:12,自引:0,他引:12  
Moll UM  Zaika A 《FEBS letters》2001,493(2-3):65-69
  相似文献   

13.
14.
15.
16.
17.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.  相似文献   

18.
19.
20.
The ubiquitin-mediated degradation of hypoxia-inducible factor-α (HIF-α) by a von Hippel-Lindau tumor suppressor protein (pVHL) is mechanistically responsible for controlling gene expression due to oxygen availability. Germline mutations in the VHL gene cause dysregulation of HIF and induce an autosomal dominant cancer syndrome referred to as VHL disease. However, it is unclear whether HIF accumulation caused by VHL mutations is sufficient for tumorigenesis. Recently, we found that pVHL directly associates and positively regulates the tumor suppressor p53 by inhibiting Mdm2-mediated ubiquitination, and by subsequently recruiting p53-modifying enzymes. Moreover, VHL-deleted RCC cells showed attenuated apoptosis or abnormal cell-cycle arrest upon DNA damage, but became normal when pVHL was restored. Thus, pVHL appears to play a pivotal role in tumor suppression by participating actively as a component of p53 transactivation complex during DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号