首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although pericentromeric heterochromatin is essential for chromosome segregation, its role in humans remains controversial. Dissecting the function of HIV-1-encoded Vpr, we unraveled important properties of heterochromatin during chromosome segregation. In Vpr-expressing cells, hRad21, hSgo1, and hMis12, which are crucial for proper chromosome segregation, were displaced from the centromeres of mitotic chromosomes, resulting in premature chromatid separation (PCS). Interestingly, Vpr displaced heterochromatin protein 1-α (HP1-α) and HP1-γ from chromatin. RNA interference (RNAi) experiments revealed that down-regulation of HP1-α and/or HP1-γ induced PCS, concomitant with the displacement of hRad21. Notably, Vpr stimulated the acetylation of histone H3, whereas p300 RNAi attenuated the Vpr-induced displacement of HP1-α and PCS. Furthermore, Vpr bound to p300 that was present in insoluble regions of the nucleus, suggesting that Vpr aberrantly recruits the histone acetyltransferase activity of p300 to chromatin, displaces HP1-α, and causes chromatid cohesion defects. Our study reveals for the first time centromere cohesion impairment resulting from epigenetic disruption of higher-order structures of heterochromatin by a viral pathogen.  相似文献   

4.
5.
Posttranslational histone modifications and histone variants form a unique epigenetic landscape on mammalian chromosomes where the principal epigenetic heterochromatin markers, trimethylated histone H3(K9) and the histone H2A.Z, are inversely localized in relation to each other. Trimethylated H3(K9) marks pericentromeric constitutive heterochromatin and the male Y chromosome, while H2A.Z is dramatically reduced at these chromosomal locations. Inactivation of a lysosomal and nuclear protease, cathepsin L, causes a global redistribution of epigenetic markers. In cathepsin L knockout cells, the levels of trimethylated H3(K9) decrease dramatically, concomitant with its relocation away from heterochromatin, and H2A.Z becomes enriched at pericentromeric heterochromatin and the Y chromosome. This change is also associated with global relocation of heterochromatin protein HP1 and histone H3 methyltransferase Suv39h1 away from constitutive heterochromatin; however, it does not affect DNA methylation or chromosome segregation, phenotypes commonly associated with impaired histone H3(K9) methylation. Therefore, the key constitutive heterochromatin determinants can dynamically redistribute depending on physiological context but still maintain the essential function(s) of chromosomes. Thus, our data show that cathepsin L stabilizes epigenetic heterochromatin markers on pericentromeric heterochromatin and the Y chromosome through a novel mechanism that does not involve DNA methylation or affect heterochromatin structure and operates on both somatic and sex chromosomes.  相似文献   

6.
7.
Sciara coprophila (Diptera, Nematocera) constitutes a classic model to analyze unusual chromosome behavior such as the somatic elimination of paternal X chromosomes, the elimination of the whole paternal, plus non-disjunction of the maternal X chromosome at male meiosis. The molecular organization of the heterochromatin in S. coprophila is mostly unknown except for the ribosomal DNA located in the X chromosome pericentromeric heterochromatin. The characterization of the centromeric regions, thus, is an essential and required step for the establishment of S. coprophila as a model system to study fundamental mechanisms of chromosome segregation. To accomplish such a study, heterochromatic sections of the X chromosome centromeric region from salivary glands polytene chromosomes were microdissected and microcloned. Here, we report the identification and characterization of two tandem repeated DNA sequences from the pericentromeric region of the X chromosome, a pericentromeric RTE element and an AT-rich centromeric satellite. These sequences will be important tools for the cloning of S. coprophila centromeric heterochromatin using libraries of large genomic clones.  相似文献   

8.
Histone modifications might act to mark and maintain functional chromatin domains during both interphase and mitosis. Here we show that pericentric heterochromatin in mammalian cells is specifically responsive to prolonged treatment with deacetylase inhibitors. These defined regions relocate at the nuclear periphery and lose their properties of retaining HP1 (heterochromatin protein 1) proteins. Subsequent defects in chromosome segregation arise in mitosis. All these changes can reverse rapidly after drug removal. Our data point to a crucial role of histone underacetylation within pericentric heterochromatin regions for their association with HP1 proteins, their nuclear compartmentalization and their contribution to centromere function.  相似文献   

9.
Volpi S  Bongiorni S  Prantera G 《Chromosoma》2007,116(3):249-258
In Drosophila melanogaster, the two chromosomal proteins HP1 and HP2 colocalize on heterochromatic and euchromatic sites in polytene chromosomes. Mutations in the HP2 gene act as dominant suppressors of position effect variegation, demonstrating a role for HP2 in the formation or maintenance of heterochromatin. In this paper, we investigated whether a putative homolog of the D. melanogaster HP2 is involved in the facultative heterochromatinization process in mealybugs. Using an antibody raised against the Drosophila HP2, we identified in the mealybug Planococcus citri a cross-reactive epitope, which we refer to as HP2-like. We investigated the HP2-like pattern during the male embryo development where the entire paternal haploid chromosome set becomes heterochromatic. The HP2 antibody heavily decorates the chromocenters, where it localizes with HP1, and marks the chromatin before it acquires the full cytological characteristics of the male-specific heterochromatin. In euchromatic chromosomes, HP2-like is mainly concentrated at telomeric sites. The interplay between HP2-like and HP1-like was studied by dsRNA interference experiments. Extinguishing HP1-like expression by RNAi does not prevent the association of HP2-like with facultative heterochromatin, implying that HP2-like binds to chromatin in a HP1-independent manner. Our results confirm and extend the structural and functional conservation of proteins involved in heterochromatin assembly. Silvia Volpi and Silvia Bongiorni contributed equally to the work.  相似文献   

10.
Sister chromatid cohesion is crucial to ensure chromosome bi‐orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila. Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin‐associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein‐1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin‐like establishment functions and shugoshin‐like heterochromatin‐based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.  相似文献   

11.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle. © 1993 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
By means of several reciprocal translocations in Sciara coprophila, each having a break-point in the proximal X heterochromatin, it has been possible in the salivary gland nucleus to bring about separation of specific regions of this heterochromatin and then, by means of in situ hybridization, to determine the relative number of ribosomal RNA cistrons in each. The three blocks of heterochromatin delineated by the translocation break-points have been designated H1, H2, and H3; H1 is the most proximal, lying immediately to the right of the X centromere, and H3 is the most distal, constituting the very end (right) of the chromosome. The distribution of ribosomal RNA cistrons is as follows: 10% are located in H1; 50% in H2; and 40% in H3. For the first time it has been possible to confirm by grain count our previous biochemical estimate of a 60% deletion of rRNA cistrons in the proximal heterochromatin of the X W homologue. The grain count data also support the conclusion of our previously published cytological analysis, that the exchange points in the X heterochromatin are identical in translocations T29 and T32 (between H1 and H2), also in translocations T23 and T70 (between H2 and H3). The coincidence of break-points in the X heterochromatin is considered in relation to the chromomere make-up of the region. Also, the occurrence of ribosomal RNA cistrons in all three heterochromomeres is discussed in relation to the functional significance of chromomeres.  相似文献   

15.
16.
The kinetochore, a multi-protein complex assembled on centromeric chromatin in mitosis, is essential for sister chromosome segregation. We show here that inhibition of histone deacetylation blocks mitotic progression at prometaphase in two human tumor cell lines by interfering with kinetochore assembly. Decreased amounts of hBUB1, CENP-F and the motor protein CENP-E were present on kinetochores of treated cells. These kinetochores failed to nucleate and inefficiently captured microtubules, resulting in activation of the mitotic checkpoint. Addition of histone deacetylase inhibitors prior to the end of S-phase resulted in decreased HP1-? on pericentromeric heterochromatin in S-phase and G2, decreased pericentromeric targeting of Aurora B kinase, resulting in decreased pre-mitotic phosphorylation of pericentromeric histone H3(S10) in G2, followed by assembly of deficient kinetochores in M-phase. HP1-?, Aurora B and the affected kinetochore proteins all were present at normal levels in treated cells; thus, effects of the inhibitors on mitotic progression do not seem to reflect changes in gene expression. In vitro kinase activity of Aurora B isolated from treated cells was unaffected. We propose that the increased presence in pericentromeric heterochromatin of histone H3 acetylated at K9 is responsible for the mitotic defects resulting from inhibition of histone deacetylation.  相似文献   

17.
We have examined the female meiotic behaviour of three X chromosomes which have large deletions of the basal heterochromatin in Drosophila melanogaster. We find that most of this heterochromatin can be removed without substantially altering pairing and segregation of the two Xs. To compare the role of heterochromatin in male meiosis we have constructed individuals which carry two extra identical heterochromatic mini X chromosomes. These minis behave as univalents even though their heterochromatin is known to contain satellite DNA. We conclude therefore that this satellite DNA is not sufficient to allow effectively normal meiotic behaviour. In all other respects our results in the male extend and confirm Cooper's postulate that there exist specific pairing sites in the X heterochromatin. Thus we find no support in either female or male meiosis for the concept that satellite DNA is involved in meiotic chromosome pairing of either a chiasmate or an achiasmate kind.  相似文献   

18.
19.
Badugu R  Yoo Y  Singh PB  Kellum R 《Chromosoma》2005,113(7):370-384
Heterochromatin Protein 1 (HP1) is a conserved component of the highly compact chromatin found at centromeres and telomeres. A conserved feature of the protein is multiple phosphorylation. Hyper-phosphorylation of HP1 accompanies the assembly of cytologically distinct heterochromatin during early embryogenesis. Hypo-phosphorylated HP1 is associated with the DNA-binding activities of the origin recognition complex (ORC) and an HMG-like HP1/ORC-Associated Protein (HOAP). Perturbations in HP1 localization in pericentric and telomeric heterochromatin in mutants for Drosophila ORC2 and HOAP, respectively, indicate roles for these HP1 phosphoisoforms in heterochromatin assembly also. To elucidate the roles of hypo- and hyper-phosphophorylated HP1 in heterochromatin assembly, we have mutated consensus Protein Kinase-A phosphorylation sites in the HP1 hinge domain and examined the mutant proteins for distinct in vitro and in vivo activities. Mutations designed to mimic hyper-phosphorylation render the protein incapable of binding HOAP and the DmORC1 subunit but confer enhanced homo-dimerization and lysine 9-methylated histone H3-binding to the protein. Mutations rendering the protein unphosphorylatable, by contrast, do not affect homo-dimerization or binding to lysine 9-di-methylated histone H3, HOAP, or DmORC1 but do confer novel DmORC2-binding activity to the protein. This mutant protein is ectopically localized throughout the chromosomes when overexpressed in vivo in the presence of a full dose of DmORC2. This ectopic targeting is accompanied by ectopic targeting of lysine 9 tri-methylated histone H3. The distinct activities of these mutant proteins could reflect distinct roles for HP1 phosphoisoforms in heterochromatin structure and function.  相似文献   

20.
Shareef MM  Badugu R  Kellum R 《Genetica》2003,117(2-3):127-134
We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylated isoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号